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Preface

The framework of quantum mechanics in the adiabatic limit where no 
quantum transition occurs is traced back to the quantization condition 
of adiabatic invariants, i.e., of action variables. In fact, the 
interpretation of this condition as the commutation rule for a pair of 
canonical variables led to the construction of Heisenberg's matrix 
equation; another interpretation of this condition, as that for confining 
a standing wave, led to the birth of Schrö dinger's wave mechanics. In 
classically-chaotic systems, however, the stable tori are broken up and 
we can conceive no action to be quantized. Therefore, we cannot prevent 
ourselves from being suspicious of using the present formalism of 
quantum mechanics beyond the logically acceptable (i.e., classically-
integrable) regime. Actually, quantum dynamics of classically-chaotic
systems yields only quasi-periodic and recurrent behaviors, thereby 
losing the classical-quantum correspondence. There prevails a general 
belief in the incompatibility between quantum and chaos. Presumably,
a generalized variant of quantum mechanics should be established so 
as to accommodate the temporal chaos. 

The range of validity of the present formalism of quantum 
mechanics will be elucidated by an accumulation of experiments on the 
mesoscopic or nanoscale cosmos. Owing to recent progress in advanced 
technology, nanoscale quantum dots such as chaotic stadium and 
integrable circle billiards have been fabricated at interfaces of 
semiconductor heterojunctions, and quantum transport in these 
systems is under active experimental investigation. Anomalous 
fluctuation properties as well as interesting fine spectral structures 
that have already been reported are indicating symptoms of chaos. 
Quantum transport in mesoscopic systems will serve as a nice 
candidate for elucidating the effectivenes and noneffectiveness of 
quantum mechanics when applied to classically-chaotic systems. The 
experimental results could even provide a clue towards the creation of 
a generalized quantum mechanics, just as blackbody cavity radiation 
at the turn of the last century did for the creation of present-day

ix



x Preface

quantum mechanics. 
Therefore, in this book I shall investigate quantum transport in 

mesoscopic systems that are classically chaotic, showing the success 
and failure of theoretical trials to explain experimental issues. My 
basic idea is as follows: Our inability to explain anomalous quantum 
effects in mesoscopic systems is due partly to our formalism's 
inability to describe situations sensitive to initial conditions and 
partly to technological weakness in making fine-grained predictions 
without being affected by extrinsic noises and random potentials. 

Despite active research on the semiclassical quantum theory of 
chaotic systems, most of the semiclassical treatment of bounded and 
open systems have not fully succeeded to capture the clear signatures 
of chaos because of wave diffraction effects, the difficulty of systematic 
enumeration of scattering and/or periodic orbits, etc. I shall also 
develop the semiclassical theory (i.e., scattering theory for open systems 
and trace formula for bounded systems) and raise some unsatisfactory 
points involved in this traditional theory. The existing semiclassical 
theory could not be the ultimate theory of quantization of chaos. There 
is thus a need to go in a radically new direction to accommodate a 
genuine temporal chaos in quantum dynamics. 

In an attempt to see the unambiguous quantum-classical
correspondence in the semiclassical realm of chaotic systems, we shall 
come to question the continuity of the time variable. With the help of 
recent progress in nonlinear classical dynamics, I have dared to hint 
at a slightly portentous proposal to construct a generalized quantum 
mechanics by discretizing the "time" and to describe interesting 
outcomes emerging from the procedure of time discretization in 
quantum dynamics. 

It is our hope that, through the insights gained from studying the 
chapters that follow, readers would be greatly encouraged to 
comprehend the incompatibility between quantum and chaos and to 
start their own speculation on a new framework of quantum 
mechanics that would unify these two key concepts in contemporary 
science.

I am grateful to many people, including J. P. Bird, A. Bulgac, P. 
Gaspard, S. Kawabata, C. M. Marcus, S. A. Rice, and Y. Takane for 
stimulating discussions that have sharpened my ideas as embodied 
in the present book. I wish to thank Alwyn van der Merwe for his 
critical reading of the manuscript and improving its grammatical errata. 



Chapter 1 

Genesis of Chaos and 
Breakdown of Quantization 
of Adiabatic Invariants 

Key words and key concepts required to understand the following 
chapters are explained below. With increase of perturbations, 
resonances break the Kolmogorov-Arnold-Moser (KAM) tori, leading to 
a genesis of chaos. Characterization of chaotic behaviors is achieved 
by using Lyapunov exponent and the Kolmogorov-Sinai entropy. We 
consider how chaos affects quantum mechanics by addressing the 
breakdown in the quantization of adiabatic invariants. 

1.1. Introduction 

Over the past decades, an increasing number of researchers have 
taken up studies of chaos. Most nonlinear dynamical systems, from 
driven pendulum to fluid turbulence, display chaotic behaviors. It is 
rather difficult to address, among diverse systems in nature, those 
that cannot exhibit chaos. The concept of chaos is, however, inherently 
relevant to classical dynamics. Standard diagnostic characters such as 
sensitivity to initial conditions and a nonvanishing Kolmogorov-Sinai
entropy are meaningful only in classical dynamical systems. 

On the other hand, we all recognize that quantum mechanics, the 
greatest theory constructed in the 20th century, can explain a lot of 
microscopic phenomena, such as superconductivity, superfluidity, and 
the quantum Hall effect, and moreover serve as an indispensable 

1



2 Chapter 1 

guiding principle for today's science and technology. The genesis of 
chaos, however, is disturbing the foundation of the quantum theory. 
Researchers in the forefront have begun to reveal the quantum-
mechanical fingerprints of chaos and even to contemplate the invention 
of a generalized version of quantum mechanics which would have an 
unambiguous correspondence with chaos. 

In classical mechanics, the Hamilton equation is nonlinear in 
general. In the case of chaotic systems, the stretching and folding 
(Smale's horse-shoe) mechanism gives rise to a phase droplet (i.e., a 
cluster of initial points in phase space) that evolves into self-similar
structures on infinitely small scales in phase space. In the 
corresponding quantum dynamics, however, the wavefunctin will 
show a recurrent (time-periodic) phenomenon, i.e., suppression of 
chaotic diffusion because of the linearity of the time-dependent
Schrödinger equation. From a viewpoint of measurement, 
Heisenberg's uncertainty principle imposes a limitation of the order 
of Planck constant in the resolution of phase space, leading to the 
unavoidable incompatibility between quanta and chaos. 

In this book we shall describe this incompatibility in detail and 
present some challenging attempt to reconcile or unify these 
contradictory concepts. To begin with, standard diagnostics of chaos 
will be sketched. 

1.2. Collapse of KAM Tori and Onset of Chaos 

To explain the mechanism for the onset of chaos, we choose a two- 
dimensional oscillator (without dissipation) described by the 
Hamiltonian

(1.1)

A canonical transformation from {pi,qi} to with the action Ji=

and angle converts (1.1) into 

(1.2)

The {Ji} are obviously constants of motion, i.e., =0. 
Any orbit is either periodic or quasi-periodic, and confined on the 
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surface of the torus characterized by a suitable set of radii J1 and J2;
see Fig. 1.1. 

On introduction of nonintegrable perturbation V, the Hamiltonian 
becomes

(1.3)

where is a constant of O(1) and m, n run over the set of integers. 
The stability of the torus will be examined below. 

Using a generating function 

we consider the canonical transformation 

Then the Hamiltonian (1.3) is transformed into 

(1.4)

(1.5a)

(1.5b)

Fig. 1.1. 2-dimensional torus with action variables J1 and J2. and are 
mutually irreducible closed paths. 
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(1.6)

where = are exploited. The method for treating the term 
linear in depends on the magnitude of fmn

If the magnitude of the perturbation is small enough to ensure 

<< | + for an arbitrary set of m and n, we can choose

(1.7)

eliminating the -linear term in (1.6). In fact, in case of the nonresonant 
tori with the irrational winding number any rational number 
m/n can not fall within the small but finite range around and 
thereby we can obtain (1.7). Rigorously speaking, the resonant tori 
with the rational number also exist, making the denominator of 
(1.7) vanishing, but most of the tori are irrational and the fraction of 
the resonant tori is negligible as a whole. Higher-order terms in in 
(1.6) can also be made to vanish by repetition of the same procedure as 
(1.4) through (1.7). Finally the Hamiltonian is written as 

(1.8)

We again obtain the torus. Therefore, as long as the perturbation V is
small enough, most of the tori are stable though slightly deformed. 
These invariant tori are called as Kolmogorov-Arnold-Moser or KAM 
tori.

On the other hand, in the case of the large perturbation, one sees 
that >> m + even for the nonresonant tori. Consequently 
one fails to get a generating function with <<1 to suppress the 

- linear term in (1.6): We get extremely wide resonant regions. The 
original torus will now collapse or be broken into pieces, and any orbit 
wanders in an erratic way over an infinitely large number of these 
pieces. This completes a scenario for the collapse of KAM tori. 

We shall proceed with providing a mechanism for the genesis of 
chaos. A picture by which the most unstable torus (i.e., a separatrix) 
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collapses will be shown vividly by resorting to the Poincare' mapping. 
This map establishes a relation between succcessive discrete points 
constructed every time that the trajectory generated by time-
continuous classical dynamics crosses a suitable cross section (i.e., 
Poincare' section) from a definite side. For instance, an arbitrary 
cross section of the torus discussed above is the Poincare' section, and 
each point in this section is generated by the area-preserving 2 x 2 
mapping F obtained from a Hamiltonian system with 2 degrees of 
freedom. The KAM tori are represented by line manifolds (e.g., curved 
lines). When the system is integrable, F depicts the Poincare' section 
filled by KAM tori that generally involve fixed points, i.e., points {Q*}
satisfying FQ*=Q*. Each fixed point has a pair of stability eigenvalues 

The fixed points with (real) >I and those with are 
called hyperbolic and elliptic fixed points, respectively. For the 
hyperbolic fixed points, in particular, the pair of stability eigenvectors 
vs and vu, characterize interesting flows around the fixed points. By 
successive operation of F, the point on vs approaches the fixed point, 
say Q0, whereas the point on vu moves away from Q0. More globally, 
there exist stable and unstable manifolds and extending from vs

and vu, respectively. For any point Q on by contrast, 

for any point Q on , Away from the fixed point Q0,

both and are curved owing to nonlinearity of the mapping F. In
case the mapping is integrable, both kind of manifolds emanating 
from the common hyperbolic fixed point Q0 connect smoothly and 
form a doubly-degenerate separatrix segregating between localized tori 
around an elliptic fixed point and extended orbits (see Fig. 1.2). The
separatrix is the most unstable against perturbation. 

If the mapping becomes nonintegrable by switching on a 
perturbation, the degeneracy of separatrices is removed, and and 
will cross each other at a point P0 called the homoclinic point. Once a 
single homoclinic point is available, an infinite number of similar 
points can be found. In fact, let us assign the location of the new point 
P1=FP0. P1 is located on if P0 is regarded as belonging to P1

should simultaneously be the point on if P0 is regarded as lying on 
To resolve this dilemma, P1 has to be another homoclinic point in 
which and intersects. By repetition of this procedure, 
becomes oscillating around and an infinite number of homoclinic 
points are generated. Since F is area-preserving, the black area, e.g., 
inside in Fig. 1.3, has to be kept on each mapping. Therefore, as the 
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Fig. 1.2. Separatrices and hyperbolic fixed point Q0.

Fig. 1.3. Homoclinic structures and Smale's horse shoe. 

fixed point  Q0 is approached, the black area is exponentially stretched
and    folded (i.e., via  Smale's horse-shoe mechanism)  .
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The same argument holds for the inverse map F-1 applied to P0.
In this case shows a violent undulation around as Q0 is
approached. (It should be noted that the stable manifold does not cross 
itself and the same is true for the unstable manifold.) Consequently, 
as we approach the hyperbolic fixed point, the intersection of and 

generates a complicated homoclinic strucuture consisting of an 
infinitely large number of homoclinic points (see Fig. 1.3). This provides 
a mechanism for generating chaos (Poincare' , 1890). We therefore 

and should be woven on 
infinitely small scales in phase space which, as we shall see later, will 
be impossible in the case of quantum dynamics which poses a 
limitation of order of Planck constant in the resolutiuon of phase 
space due to the uncertainty principle. 

1.3. Diagnostic Characters of Chaos 

The Standard diagnostics for characterizing chaotic behaviors are 
Lyapunov exponent and the Kolmogorov-Sinai entropy, whose concepts 
will be explained in the following: 

Lyapunov Exponent 

This is a quantity that describes the extreme sensitivty to initial 
conditions. For a given orbit in phase space, consider its variation 
with the initial value (0) at time t=O. The variation grows 
exponentially as (t) exp( t) in case of chaotic orbits. The positive
constant A is called the Lyapunov exponent. We also have >0 for 
isolated unstable periodic orbits embedded in the chaotic sea, which 
will be essential in the semiclassical theory of chaos. In case of stable 
regular orbits, (t) obeys the power law (t) t , which implies =0. 

More generally, in conservative systems with s degree of freedom, 
both positive and nonpositive 

Lyapunov exponents are available, satisfying the condition 

=0. Note that the dimensionality of the 2s-dimensional phase 
space is decreased by unity owing to the presence of energy, i.e., of 
the self-evident constant of motion. 

Let us now consider a droplet consisting of an assembly of initial 
points in phase space. Each point in the droplet begins to move 
following the deterministic law, i.e., Hamilton’s equations. Keeping 
its phase volume, this phase droplet is then stretched in directions 

understand that textures of manifolds 
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with positive Lyapunov exponents and squeezed in directions with 
negative ones. Owing to the compactness of the phase space, the 
stretching mechanism is succeeded by a folding one. By repeating 
two distinct mechanisms, finer and finer structures are formed on 
infinitely small scales. This is the Smale's horse-shoe mechanism 
generating the chaos. 

Kolmogorov-Sinai Entropy 

This entropy characterizes the degree of randomization of chaotic 
orbits. Consider an assembly of orbits with a duration T starting from 
various points in phase space. By discretizing the time as t=j t (j=0,
• • •, n-1), with t=T/n, each orbit is represented by the time
sequence of n points in phase space. We thus have an ensemble of 
discretized orbits. On the other hand, we shall divide phase space 
into small cells with identical volume u and choose an arbitrary 
sequence of n cells i0, i1, • • •, in-1 (see Fig. 1.4).

Let Pi 0
i be a probability of finding discretized orbits in the 

cells i0, i1, • •, in-1 and define the entropy

Fig. 1.4. Cell partition of phase space and cellular chain i0~i5 Discrete orbits 
matching (circle) and not matching (square) with the celluar chain. 

•
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(1.9)

n-1
If the phase space is occupied by KAM tori, the probability Pi0

i

will be zero except for a fixed sequence of cells and then Kn will actually 
be vanishing. By contrast, Kn grows with time for an assembly of chaotic 
orbits. Then the significant quantity is the degree of randomization, 
characterized by the entropy production rate per unit time: 

(1.10)

The Kolmogorov-Sinai entropy is defined as the limit 0 and 
0) of the time-averaged value of (1.10): 

(1.11)

It assumes the values 0 and + for periodic orbits and Brownian 
motions, respectively. For chaotic orbits, 0<hKS +

The quantities and hKS are complementary but independent. In 
the case of >0, hKS may be vanishing. An example of this case is a
point-particle scattering on two defocusing disks, where no confining 
of a particle is expected. 

1.4. Suppression of Chaos in Quantum Dynamics 

All the diagnostic features of chaos addressed above are meaningful 
only when the dynamics can continue to organize structures on infinitely 
small scales as time elapses. The present formalism of quantum 
mechanics, however, fails to guarantee such a kind of dynamics. To 
understand this point, let us investigate wavefunction features in 
quantum dynamics. To describe the wavefunction, we choose a minimum 
uncertainty state, i.e., a coherent state p,q>. Then the probability 
density function for a system with N degrees of freedom is given by 

(1.12)

which is a quantum analog of the classical distribution function in 
phase space. 
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The problem of representation is important. By a Fourier 
transformation of the position representation of the density operator 

with respect to the relative coordinate one 
may obtain the Wigner representation of the wave function at p and 
q(=(q"+q'>/2) as

(1.13)

While Pw(p,q) has a monumental significance, it can take negative
values and show violent undulation of O( ) in phase space. Even in 
the semiclassical limit, therefore, the Wigner function in (1.13) can
neither assimilate the classical distribution function (except for a 
very few linear systems like harmonic oscillators and noninteracting 
free particles) nor satisfy the Liouville equation even approximately. 
Because of its occasional negative values, Pw(p,q) does not qualify as
a probability. This deficiency can be overcome by means of appropriate 
coarse graining guided by Heisenberg's uncertainty principle. Making 
a Gaussian smoothing of Pw(p,q) in (1.13) at every point (p,q) in
phase space, we can finally arrive at (1.12).

To make this statement concrete, a Gaussian wave packet will be 
chosen as an initial state. In general, up to the time of O( ), P(p,q)
in (1.12) proves to mimic a (coarse-grained) classical distribution 
function, obeying the Liouville equation. In classically integrable and 
regular systems, the wave packet shows a simple (homogeneous or 
inhomogeneous) diffusion. In classically nonintegrable and chaotic 
systems, however, the profile of P(p,q) develops Smale's horse-shoe
(i.e., stretching and folding) mechanism. Consequently, the wavepacket 
deforms to finer and finer textures, suggesting a formation of a fractal 
object. To proceed to a more quantitative description, we define 
contour lines C(t) and a phase space area enclosed by C such that the 
integrated probability takes a fixed (arbitrary) value. The area A (t) 
constitutes an incompressible phase liquid, in which every point 
executes its own classical motion. Corresponding to the wavepacket 
dynamics of the classically chaotic system, the pattern of A(t) deforms
from a single spherical droplet to a finer and finer maze-like structure. 
The phase volume for the overall structure deduced by coarsening 
of fine textures is given by 

(1.14)
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This formula is a result of the fact that one direction of the phase 
liquid is maximally extended as t) due to the exponential 
growth in the difference of nearby orbits. On the other hand, Liouville’s 
theorem (i.e., the incompressibility of the phase liquid) imposes another 
direction orthogonal to to be contracted as exp( 

In quantum mechanics, however, there exists a lower limit in the 
resolution of phase space because of the uncertainty principle: The 
linear dimension of each phase-space cell is of O Therefore the 
classical-quantum correspondence is broken at the cross-over time, 

(1.15)

when quantum dynamics inevitably fails to assimilate the classical 
dynamics any further. For quantum dynamics will develop 
interference between nearby fine textures with a resultant diffusion 
behavior thoroughly different from that for The argument above 
is justified for namely, so long as the similarity between 
P(p,q) in (1.12) and the (coarse-grained) classical distribution function
is ensured up to the cross-over time. 

To conclude, the long-time quantum dynamics is governed by a 
quantum analog of Poincare' 's recurrence theorem: Both 
wavefunctions and energies reassemble themselves infinitely often in 
the course of long-time evolution. This phenomenon is called quantum
recurrence.

1.5. Breakdown of Quantization of Adiabatic Invariants 

The onset of chaos will greatly affect quantum mechanics, which 
describes both bounded and open (scattering) systems. The Bohr-
Sommerfeld quantization condition for action lays the foundation of 
the present formalism of quantum mechanics in the limit where 
quantum transitions can be ignored. In fact, this condition, taken as 
the noncommutativity of canonical variables ) , led to the 
birth of Heisenberg’s matrix mechanics; the same condition, taken as 
that for the existence of a standing wave, following the de Broglie’s 
wave-particle dualism, gave rise to Schrödinger’s wave mechanics. 
The emergence of chaos, however, renders meaningless the 
quantization of action. 

is traced back to the The quantization condition for action 
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experimental discovery of the quantization of adiabatic invariants. 
So, let us review a historical route to this discovery. Following 
Ehrenfest (1916) , we shall concentrate upon the problem of the
radiation from a blackbody cavity. By the latter, we mean the cavity 
enclosed by a wall at temperature T that contains electromagnetic 
waves (i.e., an assembly of energy resonators) and emits radiation 
through a small hole to the outside. If one could move the wall 
adiabatically (very slowly) to expand or contract, the cavity volume 
V, frequency vi and energy E1 of each energy resonator would change 
as well. Einstein proved in 1911, however, that the ratio 

E /v (1.16)

remains unchanged under the adiabatic change; this ratio is therefore 
called as the adiabatic invariant. 

On the other hand, another kind of adiabatic invariant found by 
Wien is v/T, which represents the displacement law. Combining these 
two invariants, one has the adiabatically-invariant equality E/v =

F(v/T) for a given arbitrary function F(x). Noting the state density 
for the electromagnetic wave, the blackbody radiation 

rate in the frequency range is seen to obey a scaling formula: 

(1.17)

Equation (1.17) was in fact verified by experiments. 
It should be emphasized that (1.17) was derived within a framework 

of classical theory. While Planck assumed E to be an integer multiple 
of hv to explain the experimental curve F in terms of statistical 
mechanics, this assumption implies the quantization of the adiabatic 
invariant in (1.16), i.e., E/v =nh with n =1,2,•••. The adiabatic invariant 
is thus a cornerstone leading to the birth of quantum theory. The 
quantization of the adiabatic invariant formally reduces to that of the 
action J= , since the adiabatic invariant turns out to

be the action J (more precisely, 2 J). To state this explicitly, for a 
harmonic oscillator, with energy E=(p2+ w2q2) /2, we see that 2 J=

pdq= area of ellipse =E /v

N (>1) degrees of freedom, one gets
Extending the quantization condition for action to systems with 
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(1.18)

with k =1,2•••,M and nk =0,1,2,•••. and mk represent mutually-
independent closed paths (see Fig. 1.1) and Maslov index, respectively. 
In the completely-integrable case with the number of constants of 
motion M equal to N, N-dimensional tori are formed and all N actions
{Jk} are calculable. We are then able to proceed to quantum theory. In 
nonintegrable case with M<N, the torus will collapse and is replaced 
by chaos, making it impossible to quantize actions, which was first 
pointed by Einstein as early as 1917. In these nonintegrable cases, 
both matrix mechanics and wave mechanics are not able to find their 
logical foundation any more. One may now suspect de Broglie's 
relation = h/p and v = E/h, since the characteristic wave length 
and frequency v are not conceivable for the classically chaotic systems. 
Even if de Broglie's relation remained valid, there exsists no 
quantization rule of chaos because of the absence of adiabatic 
invariants. So, the very idea to interpret the quantization rule from 
the view point of wave mechanics would become groundless. This 
point will be investigated in detail in Chap. 8. 

The new criteria for quantization of chaos should be searched for 
by examining the experiments on systems exhibiting chaos, e.g., 
complicated energy spectra of diamagnetic Rydberg atoms and the rich 
fluctuation features of quantum transport in stadium or crossroads 
billiards at the interfaces of semiconductor heterojunctions (Marcus 
et al., 1992). In particular, rapid progress in modern high technology 
has made it possible to fabricate nanoscale structures and mesoscopic 
devices (Beenakker and van Houten, 1991; Akkermans et al., 1995).
For instance, in conducting disks at the interface of GaAs/AlGaAs 
heterostructures, the mean free path of electron is much larger than 
the system's size, and the concentration of electrons is less than 1012

cm-2 . Then the electron correlation is irrelevant and ballistic chaotic 
motions of individual electrons in billiards play an essential role in 
quantum transport. Since the motion of electrons obeys quantum 
mechanics, the quantum analog of chaos, or so-called quantum 
chaos, emerging from mesoscopic systems has become a target of 
intensive theoretical and experimental researches (Gutzwiller, 1990; 
Giannoni et al., 1991; Nakamura, 1993, 1995; Chirikov and Casati, 
1995).

In the experiments done so far on the mesoscopic (nanoscale) 
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cosmos, fluctuations caused by impurity potentials and thermal 
noises are competitive with those caused by deterministic chaos. So 
it would not be right to emphasize the limitation of the present 
formalism of quantum mechanics. As is understood from the 
arguments above, however, the genesis of chaos is clearly disturbing 
the foundation of quantum mechanics in the adiabatic regime where 
the quantum transition is suppressed. In the following chapters, 
bearing in mind a future subject of constructing a generalized quantum 
mechanics that could reconcile quantum with chaos, we shall discuss 
a variety of interesting quantum and semiclassical features of 
systems exhibiting chaos. 
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Chapter 2 

Semiclassical Quantization of 
Chaos: Trace Formula 

One of the most fundamental tasks of quantum chaos is to explore 
the semiclassical quantization for chaotic systems. Assuming the 
validity of the existing formalism of Schrödinge-Feynman's 
quantum mechanics, a semiclassical quantization rule of chaos or the 
so-called Gutzwiller's trace formula is derived. Its application to 
persistent currents and the extension to S matrices and conductance 
fluctuations are presented. A number of questions around the trace 
formula are raised. 

2.1. Green's Function and Feynman's Path Integral Method 

In the previous chapter we have indicated that the genesis of chaos is 
destabilizing the foundation of the contemporary form of quantum 
mechanics. The question to be naturally addressed is how to generalize 
quantum mechanics so that it will become viable in chaotic systems. 
The answer will be given by designing experiments to capture chaos-
induced quantum fluctuations and by deriving an experimental formula 
for the quantization of chaos. (One should recall that Bohr-Sommerfeld's
quantization rule for actions can be traced back to the Wien-Planck's
scaling formula for the blackbody radiation and therefore be guided 
by experiments.) One of the promising experiments to respond to this 
situation is quantum transport in mesoscopic systems wherein both 
thermal noise and impurity potential are well suppressed. 

On the other hand, Schrödinger's quantum mechanics, which is 

15
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also supported by an accumulation of experimental results on both 
closed and open systems, should include this quantization condition of 
actions (adiabatic invariants) in the semiclassical limit. Confining 
ourselves to a stationary problem, we shall first illustrate this point 
and then derive the semiclassical quantization condition of chaos by
assuming a priori the validity of quantum mechanics for chaotic systems 
(Gutzwiller, 1990). 

The stationary state of a particle with mass m moving in N
dimensions is described by the time-independent Schrödinger equation 

(2.1)

where H(q) = - + is a time-

independent Hamiltonian. The corresponding Green function is defined 
by

(2.2)

which stores all the knowledges of eigenvalues (En} and eigenfunctions 
{ }. In fact, the En can be obtained from the poles of 

(2.3)

And, noting (x), we get the spectral density p (E) 
from

(2.4)

Since the Green function (2.2) is nothing but the Laplace transform 
of the time evolution propagator 

(2.5)

the problem of solving (2.1) is eventually reduced to obtaining the 
propagator K. According to Feynman's path-integral formalism of 
quantum mechanics, K is expressed only in terms of classical 
terminology:
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(2.6)

where W is a classical action functional described by a Lagrangian as 

(2.7)

Although (2.6) implies the sum of integrations over an innumerable 
number of classical paths, the great simplification in the calculation 
occurs in the semiclassical limit ( 0), where the integrand in (2.6) 
is highly oscillating and its integration leads to a mutual cancellation. 
In this case, we can take a stationary phase approximation in the 
neighborhood of the saddle point 

having
(2.8)

where j denotes the classical orbits satisfying Hamilton's principle, 
(2.8), with boundary conditions q(0)=q' and q(t)=q". The values Wj , ,
and µ j are defined for each orbit j: is the 
inverse of a Jacobian; the phase shift is the Morse-Maslov
index mj (the number of singular points of between q' and q" )
multiplied by the phase jump /2. 

As noted above, the Laplace transform of the propagator K yields
the Green function. In particular, its trace is 

(2.9)

The explicit evaluation of (2.9) strongly depends on the integrability 
or nonintegrability of the underlying classical system. Therefore we 
shall investigate (2.9) in these distinctive cases separately. 

2.2. Quantization of Integrable Systems 

In the completely integrable case when the number of constants of 
motion accords with the degree of freedom N, phase space is occupied 
by invariant tori, as in Fig. 1.1, and adiabatic invariants given by the 
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irreducible actions 
(2.10)

are essential. In (2.10)   implies an irreducible closed contour in Fig.
1.1. After integration over t in (2.9), we transform from the dynamical 
variables p, q to the action-angle variables. Then any periodic orbit 
proves to be topologically equivalent to a suitable sequence of s (see 
Fig. 2.1), and the effective action can be written as a sum of the winding 
numbers times the irreducible actions Sk. Eventually (2.9) becomes 

(2.11)

where µ k now comes from the Morse-Maslov index for and V is the 
volume of the N-dimensional torus characterized by Poles of
(2.11) yield 

Fig. 2.1. Periodic orbit consisting of irreducible closed paths. In this 
example, the winding numbers are =3 and =2 for closed paths and 
respectively.
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This is just Einstein's quantization rule, improved so as to include 
the Morse-Maslov indices. Since the rule in the form (2.12) was 
found originally by Brillouin and Keller, noting the single-valuedness
of semiclassical wavefunctions, it is called the Einstein, Brillouin, 
and Keller, or EBK, quantization rule. The semiclassical limit of 
quantum mechanics has thus turned out to reproduce a result of "old"
quantum theory, thereby unambiguously establishing a one-to-one
correspondence between the invariant tori and quantum eigenvalues. 

The rule (2.12) is by its nature traceable to experimental evidence 
(i.e., the Wien-Planck scaling formula). It holds good only for 
completely integrable systems. When the number of constants of 
motion M is less than N, the torus will collapse and become replaced by 
chaos. The EBK quantization rule cannot be justified any more. 

2.3. Quantization of Chaos: Trace Formula 

By still assuming the validity of the Schrödinger-Feynman formalism 
of quantum mechanics for classically-chaotic systems, Gutzwiller 
(1971, 1990) proceeded to look for a correspondence between the 
semiclassical quantum "irregular" spectra and chaotic orbits in 
nonintegrable systems. Because his intensive study was motivated 
by a theoretical curiosity to understand quantum symptoms of chaos 
in the semiclassical region, his final result (i.e., the trace formula) 
should not be understood as a new framework of quantum mechanics 
corresponding to chaos. 

Since the invariant tori have now collapsed, it is meaningless to 
imagine a transformation from p,q coordinates to action-angle
variables. Instead we again carry out the saddle-point approximation 
in the q integration of (2.9), using the equality 

(2.13)

The condition for momenta in (2.13), together with the condition for 
tracing (i.e., q"=q'=q ), manifests that only periodic orbits can
contribute to the TrG(E), to which, paradoxically, chaotic orbits
make no contribution. Typically, in chaotic systems without any 
bifurcation, there exist isolated and unstable periodic orbits bearing 
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the positive Lyapunov exponents. Although the Lebesgue measure of 
periodic orbits is vanishing in the chaotic sea, their number is 
infinite.

Collecting all periodic orbits in (2.9), we find 

where

(2.14)

(2.15)

Here denotes a primitive periodic orbit with energy E and the 

number of its repetition; the reduced action and period for are S (E)

p•dq) and , respectively; is an exponent

responsible for the transverse orbital stability: 

(2.16)

From (2.14)-(2.16), we finally reach Gutzwiller's trace formula: 

(2.17)

Tr G0(E) comes from a contribution from zero-length orbits. M is a 
linearized Poincare' map, i.e., a Monodromy matrix describing the 
time evolution of a transverse displacement from the orbit : 

(2.18)

The stability exponent available from the eigenvalue of M depends 
on the type of fixed points. Corresponding to unstable and stable 
periodic orbits, one has =exp (± u ) and exp (iu ), respectively. 
Typically, for homoclinic orbits with hyperbolic fixed points, we get a 
positive Lyapunov exponent and thereby 

(2.19)

The formula (2.17) indicates that semiclassical eigenvalues (and 
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eigenstates) are constructed through complicated interference among a 
set of periodic orbits. A serious problem we encounter here is that, 
due to the absence of a KAM torus, the sum in (2.17) includes 
arbitrarily-long periodic orbits. Introducing the KS entropy 
for bounded systems), the number of orbits with a period less than a 
given period T(>>1) is N(T) exp(hKST) /T (see Sinai, 1976), i.e.,
exponentially proliferating, while the amplitude of terms with a period 
T(= T ) is A (T) T T exp(-hKST/2). Hence the
contribution of orbits with periods less than T is given by A(T) x N(T)
exp(hKST/2), which brings about a serious problem of nonconvergence
in (2.17). It is inevitable to devise a method to make (2.17) 
"conditionally convergent."

To resolve this problem, new developments appeal to the theory of 
Riemann's zeta function together with the invention of a novel 
resummation of series expansion called a Riemann-Siege1 type 
resurgence (Berry and Keating, 1990). This idea can be applied to 
Gutzwiller's trace formula. By simple integration and exponentiation 
of (2.17), together with an expansion 

in (2.19), one obtains (Gutzwiller, 1990) 

where (E) is the Ruelle zeta function, defined as 

with quantum weights 

(2.20)

(2.2 la) 

(2.21b)

From (2.21), one recognizes that poles of (E) lead to the quantum 
eigenvalue.

Expanding the product sum in (2.21a) up to terms of relatively 
short periodic orbits, one obtains well-converging results. In fact, 
using periodic orbits thus organized, Gutzwiller applied his trace 
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formula to the calculation of irregular spectra of donors with 
anisotropic effective mass in silicon, obtaining eigenvalues in good 
agreement with exact quantum eigenvalues. But the eigenvalues derived 
from poles of (E) are always accompanied by small imaginary 
components.

Another formidable problem around the trace formula is to find 
all periodic orbits without missing any one of them. For some fully 
chaotic systems without any bifurcation, the symbolic coding of 
periodic orbits ensures the successful counting of all periodic orbits. 
For generic Hamiltonian systems, from which both chaos and KAM 
tori emerge, however, complexity in symbolic coding of periodic orbits 
prevents us from our reaching the formulae (2.20) and (2.21). 

Furthermore, some far more important issues should be addressed: 
The trace formula is valid up to the second leading order in No 
resurgence for suitable zeta functions can therefore produce 
eigenvalues with precisions higher than the order of N. If one were 
to resolve rigorously the problem of conditional convergence, the trace 
formula should be improved so as to incorporate all orders in . Such 
attempts, however, will lead us into the forest of complicated
mathematics, which is not compatible with our aim to achieve 
simplicity of the fundamental law. 

2.4. Application of Trace Formula to Autocorrelation Functions 

While the computation of the trace formula is practically difficult, the 
calculation of its autocorrelation function is feasible on having 
recourse to some approximate methods. These correlation functions 
are important in the physics of mesoscopic phenomena in the ballistic 
regime, where the elastic mean-free path of electrons is larger than 
the linear dimension of the system, and a deterministic law is operative. 
Below we shall apply the trace formula to persistent currents and S 
matrices in chaotic systems. 

Persistent Currents 

The correlation function of the persistent current was studied by 
several groups (Szafer and Altshuler, 1993; Berry and Keating, 1994). 
We shall here introduce Berry and Keating's work (1994). Owing to 
the Aharonov-Bohm effect, the persistent current appears in normal 
conductors in mesoscopic scales. Consider the noninteracting electron 



Semiclassical Quantization of Chaos 23

gas confined in a conducting ring threaded by an Aharonov-Bohm
magnetic flux . We choose the ring shape that guarantees complete 
chaos in the classical motion of a point particle. For instance, one may 
mention the Sinai billiard, i.e., a square conductor with a circular 
hollow in its inside (see Fig. 2.2). The contribution of a single-particle
energy level En( ) to the persistent current is given by p dEn/d ,
where the mean density state ρ is the inverse of mean level
separation. The flux will now be scaled by flux quanta =hc/e .
Taking {En) as a set of energy levels near the Fermi level, the 
autocorrelation function of the persistent current in the ground state 
is given by 

(2.22)

where ' integration and < >n imply the averages for one period 
and for levels lying below the Fermi level respectively. 

Fig. 2.2. Aharonov-Bohm flux and Sinai billiard with persistent current. 
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Here we introduce the integrated density of states in terms of 
stair-case functions: 

(2.23)

In (2.23), the suffix signifies the additional procedure of coarse-
graining the fine structures less than the mean level spacing ( =(2 p)-1)
; is just the density of states with its average given 

by ρ . With use of the identity
the calculation of C( ) turns out to be reduced to that of the correlation

function of 

(2.24)

where the average on E is that over levels below 
We proceed to apply the trace formula (2.17). Deriving the state 

density from (2.17) and integrating it over E, we find 

j
(2.25)

with Bj= (2 )-1 exp(iµj){det( Mj - 1)}-½ ; {j } denotes periodic orbits. In
(2.25) the action is supplemented by the Aharonov-Bohm term 
proportional to the winding number wjJ around the flux. The dependent 
factor, originating from the coarse-graining procedure, will render 
(2.25) absolutely convergent. 

On substitution of (2.25) into (2.24), one obtains double summations 
over periodic orbits. Once φ '-integration has been been carried out,
however, diagonal terms alone survive: 

(2.26)

If the summation in (2.26) is taken in order of increasing periods Tj ,

be replaced by l l . 

Assume a set of winding numbers {wj} for orbits with period 
T~T+dT to obey a Gaussian distribution with zero mean and with

j
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variance of <wj
2>= T/T0 , where T0 is the period of the shortest orbit. 

We can then carry out the T integration in (2.26), after replacing 
the wj -dependent factor in each of intervals T~T+dT by its Gaussian
average. As a result we find 

(2.27)

in the limit of the characteristic winding number >>1.
For a ring in d dimensions, and ,yielding

   - (d-1) . Hence (2.27) shows asymptotic behaviors C(0)=w 2 -(d-1) and
C( in the limits of =O and <<2-1, respectively. 

S Matrices 

Electric conductance, Hall resistance, and so on are being intensively 
measured on the interface layer of GaAs/AlGaAs systems. Their 
observables are related to S matrices in scattering theory. The 
semiclassical theory of scattering, e.g., a general calculation of S
matrices was developed by Miller (1975) and by Jalabert et al.(1990). 

In view of the analogy between the unitary transformation in 
quantum mechanics and canonical transformation in classical 
mechanics, the semiclassical expression for S-matrices is given by

(2.28)
where I and I' are action variables associated with initial (n) and final 
(n') channels, respectively, and is the angle variable conjugate to I,

while (s) and 2µs / are reduced action and Maslov index, respectively, 
with {s} representing all scattering orbits connecting I and I'. The
pre-exponential factor is understood as a square-root of a classical 
transition probability, P(s)(I, .

While in the attempt to evaluate (2.28) we shall meet the problem 
of the exponential proliferation, just as encountered in the trace 
formula, it is feasible to compute the autocorrelation function (Blumel 
and Smilansky, 1988; Jalabert et al., 1990; Lai et al., 1992) C =

In fact, for <<1, 
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(2.29)

In the limit 0, the double summation in the 2nd term on the r.h.s. 
becomes vanishing small owing to the destructive phase interference. 
Putting in (2.29) (i.e., time for a particle staying inside the 
collision region), we get 

(2.30)

where PII'(E,t) dt is the probability of a sojourn time falling between
t~t+dt and shows a mild dependence on E.

In the case of fully chaotic (hyperbolic) scattering not accompanied 
by any torus, <PII'(E,t)>E~ e for t>>l, giving a Lorentzian correlation

(2.31)

In the case of nonhyperbolic chaotic scattering with KAM tori, on the
other hand, <PII’(E,t)>E ~ t-z , since orbits are often pulled into the 
surface of KAM tori. Consequently, 

(2.32)

with c0, c1>0 showing around = 0 a peak of cusp type which is
reminiscent of the Ericson's fluctuation in the random systems. For 
further details, see Lai et al. (1992).

Fractal Conductance Fluctuations 

As will be described both intensively and extensively in the coming 
chapters, recent experimental and theoretical work put emphasis on 
ballistic transport in mesoscopic semiconductor heterojunctions. While 
studies on conductance fluctuations have rather focused on hyperbolic 
systems, where the escape from the billiard is exponentially fast, 
phase coherent phenomena in the generic case of systems with a 
mixed (chaotic and regular) classical phase space are much less trivial. 
Since in the generic systems there exist an infinite hierarchy of 
cantori (see Fig. 2.3), the escape from such a system is much slower 
than from hyperbolic systems and follows a power law. What will be 
a consequence of the conductance if the underlying classical dynamics 
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bears such a mixed phase? A brief answer was given by Ketzmerick 
(1996), as follows: 

The two-probe conductance G is given in terms of the sum of flux-
normalized transmission amplitudes tnm=(kn/km)½S(2)

nm as

(2.33)

Here n and m denote modes of lead wires 1 and 2, respectively.
(Details will be given in Chap. 4.) In the semiclassical approximation, 
tnm is given, just as in (2.28), by 

(2.34)

Fig. 2.3. (a) The self-similar phase space structure of a mixed system (i.e., 2-d
antidot array in a magnetic field). (b) Ballistic conductance fluctuations 
reminiscent of fractional Brownian motion. (Courtesy of R. Ketzmerick.) 
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where Ss and 2µ s / are the classical action and Maslov index of the
scattering path s traversing the cavity with classical transmission 
probability Ps (Miller, 1975; Jalabert et al., 1990). For a small 
change in magnetic field B , the reduced action is expanded in B as

(2.35)

1
where 0=hc /e is the magnetic flux quantum and , with 

xA=B, is the accumulated area enclosed by the scattering orbit s.
The change in the conductance for a small change B is found to be 

(2.36)

In the semiclassical limit, Ss and Su>> is guaranteed. In averaging 
G over (Fermi) energy, therefore, the last exponential factor in (2.36)

can be regarded as a complex random number su with mean < su>=0
and variance < su su>= ss uu' . Accordingly, G has a vanishing mean 
value, and its variance is given by 

(2.37)

Replacing the sum in (2.37) over paths s by an integral over the 
(n, m-independent) area distribution proper to mixed systems as

with

one finds 

(2.38a)

(2.38b)
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Thus, for 2, conductance vs. magnetic field shows a feature of the 
same stochastic process as a fractional Brownian motion (Mandelbrot, 
1982) with mean zero and and variance (see Fig. 2.3). 

Although examples in this section are intriguing, the semiclassical 
theory of chaotic scattering will not be satisfactory at all unless it can 
explain the transport properties in real experiments. Consider, for 
instance, the ballistic crossroad problem at the interface of GaAs/ 
AlGaAs heterostructures. We shall meet there the serious problem of 
wave diffraction at junction points between lead wires and the confining 
cavity region. The wave diffraction will affect locations of scattering 
resonances and thereby autocorrelation functions. Several other 
interesting experiments are also being designed that measure 
conductance and its fluctuations in mesoscopic solid state devices and 
aim at elucidating a quantum-mechanical symptom of chaos. In 
particular, as we shall describe in the later chapter, Marcus et al. 
(1992) exploited circle and stadium billiards at the interface of the 
above heterostructures, measuring the electric resistance as a function 
of magnetic field. The fluctuation features reported by them have a 
rich structure, which awaits challenging analyses beyond both the 
periodic orbit theory and the calculation of correlation functions: Both 
semiclassical and exact quantum-mechanical theories are not 
successful in explaining the complicated experimental results. 

2.5. Significance and Limitation of Trace Formula

So long as one stays within the framework of Schrödinger-Feynman's 
quantum mechanics, Gutzwiller's trace formula remains one of the 
most valuable procedures for exposing the ambiguities obscuring the 
borderline between quantum and classical mechanics for chaotic 
systems. As seen in the previous section, the autocorrelation function 
of the trace formula can be calculated approximately. The calculation 
of the trace formula itself, however, will encounter serious fundamental 
problems. In generic systems with elliptic islands coexisting with 
chaotic sea, symbolic coding of periodic orbits is much less obvious. 
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Even if one could achieve this coding, one would meet another difficulty, 
namely that of nonconvergence in the Gutzwiller series due to the 
exponential proliferation of periodic orbits. This problem may be 
partly overcome either by smoothing the density of states or by 
inventing a way of conditional convergence by means of the Ruelle 
zeta function. There remains, however, a more troublesome problem: 
For bounded systems, the eigenvalues computed from the trace 
formula are not real! To resolve this problem, one should improve the 
trace formula so as to include higher-order terms in which will 
demand more and more complicated mathematics. Since the 
fundamental law should be as simple as possible, we are here tempted 
to re-examine the validity of the Shrödinger-Feynman formalism of 
quantum mechanics for classically chaotic systems the hope of 
inventing its more general version. 
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Chapter 3 

Pseudo-Chaos Without
Classical Counterpart 
in One-Dimensional
Quantum Transport 

While there exists no genuine chaos in quantum systems due to the 
linearity of Schrödinger equation, we show in this chapter two 
interesting examples of pseudo-chaos in 1-dimensional (1-d) quantum
transport. These phenomena arise from quantum-mechanical
tunneling through potential barriers and have no classical counterpart. 
First we consider quantum transport in the 1-d Kronig-Penny model
in a static electric field. The S matrix as a function of the number of 
barriers is examined in the complex plane. Although no positive 
Lyapunov exponent is available, it shows a stagnant chaos around a 
torus in the weak field case, while, in the strong field case, wandering 
from one stagnant region to another in an unpredictable way. The
power spectra of transmission coefficients show a universal 1/f 2

behavior, which will be pointed out to be caused by a breakdown of the 
law of large numbers. Second, we shall investigate pseudo-chaos in 
multiple resonant tunnelings through a double-barrier structure. 
Both phenomena will be realized by using GaAs/AlAs heterostructures. 
The origin of pseudo- chaos will be revealed. 

31
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3.1. Introduction 

Due to the linearity of the Schrödinger equation, the quantum system 
exhibits no chaos characterized by the standard diagnostics of 
Kolmogorov-Sinai entropy or positive Lyapunov exponents. We can 
therefore envisage merely a quantum analogue of chaos, i.e., quantum 
chaology, rather than genuine quantum chaos. Before beginning to 
elucidate many features of the quantum analog of chaos, we shall 
introduce interesting examples of pseudo-chaos in quantum systems 
which have no classical counterpart. 

Rapid progress in the fabrication of nanoscale structures has made 
it possible to see typical quantum-mechanical effects such as tunneling 
(Esaki, 1985; Mendez et al., 1988). In particular, growing attention 
has been paid to (1) superlattices (e.g., GaAs/AlAs) with alternating 
sequence of potential barriers and wells and (2) double-barrier
structures through which resonant tunneling occurs. 

In this chapter, we shall first analyze pseudo-chaos accompanying 
quantum transport in a strictly regular superlattice, i.e., the Krönig- 
Penny model, in a constant electric field (Nakamura et al., 1994) and 
then another pseudo-chaos in multiple resonant tunnelings through 
double-barrier structures (Jona-Lasinio et al., 1992).

3.2. Quantum Transport in Superlattice and Pseudo-Chaos

Model Hamiltonian 

The superlattice is a nano-scale periodic structure composed of 
alternate arrays of potential barriers and quantum wells. For the 1-d
superlattice with period and barrier width d in the presence of 
electric field (see Fig. 3.1), the Hamiltonian is given by 

(3.1)

with the periodic potential: V(x)=V0 for (j-1)α ( j-1) α +d and V(x)=0
for (j-1)α+d with j=1,2, In (3.1), the last term of r.h.s.
represents the coupling with an electric field For simplicity, is 

here replaced by a stair-wise function = (x- Ja), with θ (x)

denoting the step function. Contrary to some recent studies on 

n

j - 1
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Fig. 3.1. Kronig-Penny model in the presence of electric field. Inset: Tn in case 
of F=0. (k0=10 is used throughout in Figs. 3.1-3.4.)

quantum transport in 1-d complicated structures, we assume neither
artificial hierarchical (e.g., Fibonacci-type) nor random potentials. 

Let us write the wavefunction 

as a sum of the incident and reflected waves for x<0 and n=S12(n)
exp(iknx ) as the transmitted wave after the n-th barrier. Considering
over-barrier tunneling throughout, the wave functions at the j th (1 j

n) barrier and well are given by     =CjeiKjx + Dje-iKjx   and Aj eikjx +B je
-ikjx

, respectively, where Kj= and Kj = with F=

2m 2 and ( K 0)2 =(k0)2 -2mV0 / 2. Owing to the continuity and 
smoothness conditions at the barrier-well boundary points, we have a 
conservative discrete map between successive set of coefficients as 
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(3.2a)

where the transfer matrix Mj is expressed by 

(3.2b)

with

It should be noted that in the limit of function walls (d 0 with 
V 0d=1), the map in (3.2) reduces to a greatly simplified version identical
to that for barrier penetrations (Jauslin, 1991). By iterating (3.2) 
under the boundary condition A 0=1, B 0=S 11 and A n=S 12, B n=0 one
obtains

n
with Qn = Mj . The transmission and reflection coefficients are given 

by Tn = and Rn = respectively. The electric conductance 

is simply The validity of our computations will be 
justified by noting the unitarity (Tn+ Rn=1).

Numerical Results

Keeping fixed both the periodicity (=1) and the area of each barrier 
V 0d(=1) , we shall present numerical results first in the limiting case
d/ 0 and then in general cases d/ 0. In the absence of an electric 

j - 1
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field, Bloch bands are formed due to the translational lattice symmetry. 
The transmission coefficient Tn exhibits periodic oscillations for 
energies ( k0)2/2m belonging to allowed bands. When the electric
field is switched on, the following features emerge. 

Here Bloch bands are slightly 
tilted and kn value increases within a single band. The number of 
Zener tunnelings at the zone boundary kBZ(= with is 
practically vanishing. Tn shows, however, a nonstationary erratic 
behavior around the plateau value, as displayed in Fig. 3.2(a). The 
reflection component of the S matrix, S 11(n), wanders in an erratic way
(see Fig. 3.2(b)) in the complex plane. Its motion is stagnant around 
the torus rather than exhibiting a global chaos. This fact leads to the 
absence of the positive Lyapunov exponent, although the distribution 
function of local Lyapunov exponents (values evaluated in finite time 
intervals) will have positive components. We shall call this marginal 
chaos pseudo-chaos . Corresponding to this peculiar feature, the power 
spectra for the time sequence {Tn}, defined by 

(I) Weak field case F<<Fc  

exhibit a 1/f v law (Voss and Clarke, 1976; Dutta and Horn, 1981;
Weissman, 1988) with the integer exponent v =2.000± 0.001 (see Fig. 
3.2(c)), which is reminiscent of Brownian motions. The 1 /f v law with v
>0 is often generated in classical dynamical systems of weakly ergodic 
class, e.g., in the intermittent chaos and general Hamiltonian 
systems, and is called simply as 1/f fluctuation. Despite recent active
works on 1/f fluctuation in classical systems (e.g., Geisel et al., 1987,
1990), little attention has been given to 1 /f fluctuation in quantum
systems.

The results in Fig. 3.2 are mysterious, if one recalls the lack of 
extrinsic randomness introduced into the system and the linearity of 
the Schrödinger equation. (In a mean-field approximation, to be 
mentioned in the next section, a nonlinear Hartree-like equation can 
be available, showing chaotic phenomena. The present scheme has 
nothing to do with this artificial introduction of nonlinearity.) With 
increase of the field strength, however, more interesting issues will 
come to the fore, as described below. 

(II) Strong field case  (F>>Fc) Tn shows a sequence of steadily-
elongated plateaus that are connected by bursts. (See Fig. 3.3(a).) Both 
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f

Fig. 3.2. Transport properties of -function model for F =0.001: (a) Tn, (b) S 11(n),
(c) power spectrum P(f) of (a) in logarithmic scales, including a reference line 
corresponding to P f2.

the direction (upwards or downwards) and the magnitude of each burst 
are unpredictable, which is in marked contrast with the feature of 
the intermittent chaos, where only the location of bursts is erratic. 
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Fig. 3.3. Same as in Fig. 3.2, but for F =10.

The component S 11 (n) in Fig. 3.3(b) wanders from one stagnant region
to another in an unpredictable way, whose overall feature looks like a 
living animal. As in the case (I), however, the positive Lyapunov 
exponent is vanishing. The power spectrum of Fig. 3.3(a) again shows 
the 1/f 2 law (Fig. 3.3(c)). Locally, a picture of the tilted band structure
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is meaningful. Laminar oscillations in the plateaus (see the inset of 
Fig. 3.3(a)) are caused by the increase of kn values within each band, 
whereas bursts are due to the Zener tunneling to adjacent bands at the 
zone boundaries. In fact, we recognize that the burst occurs regularly 
whenever kn=kBZ be satisfied, which is also distinct from the feature of 
ordinary intermittent chaos. 

We can further proceed to examine the transport properties in 
generic systems with barriers of finite width for the cases of d/ =0.1
and 0.5. In this instance the problem is actually the over-barrier
transmission. Despite this fact, a gross feature of Tn for F =10 has 
proved identical to Fig. 3.3(a) and the corresponding power spectrum 
obeys the 1/f2 law. Thus the integer exponent in the 1/f2 law holds
universally for periodic superlattices in the electric field, irrespective 
of the field strength and the width of barriers. 

To characterize the nonstationary behavior of Tn, we shall 
calculate the Allan variance (Allan, 1966; Mandelbrot, 1968; Aizawa 
et al., 1989)

(3.3)

In the Markovian process, the variance in (3.3) tends to zero as N is
increased, satisfying a scaling law A

2 = N
y

with y <0 . In the 1 /fv cases,
however, an additional scaling region to break the law of large number 
is proposed, viz. the fractional noise regime with y = v - 1. Figure 3.4
shows that, besides the Markovian regime, there generally appears 
this novel scaling regime with the exponent y =1(=2-1) . (In another
special case of v-1, the novel scaling regime shows a flicker floor with
=1- 1=0.) Finally the result provides an additional justification of the 
universality of 1/f 2 law in the present system and also indicates the
breakdown of the law of large number. 

the experiments, we should systematically change 
quantum systems by increasing the length of superlattices by a step of 
  against repeated injections of electrons with the fixed k0 . We have 
also analyzed the transmission coefficient as a function of k0 for a 
fixed number of walls, finding again the 1/f 2 law.

In conclusion, the electric conductance as a function of the number 
of barriers shows a nonstationary weak chaos characterized by both 
the 1 /fv law and anomalous Allan variance. In particular, we have

To design 
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Fig. 3.4. Allan variance A
2(N) in logarithmic scales, including a reference line

corresponding to . Symbols are used for a function model with 
F=0.001 (filled circle) and F=10 (open circle) and for d / =0.1 with F=0.001
(filled square) and F=10 (open square).

found the integer exponent v =2 and also showed the universality of 
this integer exponent by tuning both the width of barriers and 
strength of the applied field. We should emphasize many puzzling 
features of S matrices in tunneling-induced pseudo-chaos in quantum 
systems.

3.3. Resonant Tunneling in Double-Barrier Structure and 
Pseudo-Chaos

Heterostructures provide another example of pseudo-chaos. This 
model (Jona-Lasinio et al., 1992) bears an effective nonlinearity 
arising from the mean-field approximation of many-body interactions 
involved in resonant tunneling through a double-barrier structure. 

Let us consider the external potential consisting of double wells b 1

and b2 surrounded by semi-infinite barriers B 1 and B2 (see Fig. 3.5): 
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Fig. 3.5. Schematic diagram of a three-well two-barrier heterostructure. An 
electron cloud initially localized in the well 1 moves towards the well with a 
mean kinetic energy close to the resonance. 

(3.4)

where the positive constants V0 and V1 with V1>V0 denote the height of 
barriers of b1,b2 and B1, B2 , respectively. The semi-infinite barriers 
serve to confine the electrons. The term n(x;A) is a characteristic 
function defined by 

(3.5)

In a mean-field approximation, one may resort to a Hartree-like
equation describing the motion of the electron cloud. In terms of a 
single-body wavefunction (x,t), the dimensionless charge inside the 
well is given by 

(3.6)

We then obtain the time-dependent (single-body) Schrödinger 
equation

(3.7)
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which is obviously nonlinear with respect to The coupling constant
 measures the strength of the mean field acting on each electron. As 
an initial state, let us choose the wave packet located inside the well 
w1 and moving towards the well w2 with mean momentum : 

. (3.8)

If /w1<<1, then Q(0)=0, and (3.8) satisfies (3.7). Parameter values
employed in the numerical simulations are w1=w3=1100 w2 =15
b1=b2 =20 =110 with Bohr radius =0.529A. Others are V 0=0.3eV
and ER=0.15eV, with V1 being large enough to confine the electron
cloud between B1 and B2. If the mean kinetic energy is 
chosen close to the resonance energy ER , the wave packet will diffuse 

Fig. 3.6. Time evolution of the charge Q(t). (a) =0, (b) =3, (Courtesy of G. 
Jona-Lasinio et al.) 

,
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by repeating a round trip through the double barriers. 
Results of numerical iteration of (3.6) and (3.7) indicate a chaotic 

oscillation of the charge Q(t) ; the details are as follows: 
Figure 3.6 shows the erratic behavior of Q(t) as a function of time for 
the case =3. A convenient tool to quantify chaotic behaviors is the 
autocorrelation function defined by 

(3.9)

with C(t) in Fig. 3.7 shows a rapid decay of 

the correlation, followed by noisy ripples in the nonlinear ( 0) cases, 

whereas it retains a long-time correlation in the linear ( = 0) case. 
Other diagnostic quantities such as KS entropy and Lyapunov 
exponent (not displayed here) also guarantee the chaotic behavior of 
the system under consideration. 

The origin of chaos resides in the nonlinearity of the Hartree 
equation, i.e., the mean-field model in (3.6) and (3.7). One should note 
that quantum systems evolve according to a linear Schrödinger 
equation, and all the nonlinear features arising from the many-body

Fig. 3.7. Autocorrelation functions C(t) for 0 (solid line) and 0 (dashed 
dotted line). (Courtesy of G. Jona-Lasinio et al. )



Pseudo-Chaos 43

effect are absorbed into the Hamiltonian, i.e., a linear operator acting 
on the many-body wave function. This means that chaotic behavior is 
not possible in the time dependence of either wavefunction or 
observables. If the many-body effect is taken into consideration in the 
Hartree approximation, however, artificial nonlinearity appears and 
thereby one obtains the nonlinear Schrödinger equation. Therefore
the chaos demonstrated above is not a genuine chaos, but merely a 
pseudo-chaos caused by the artifact. One must recognize that the 
rigorous treatment of the many- body effect will smear out any signature 
of chaos. 

3.4. General Remarks 

Despite the absence of genuine chaos in quantum systems, we have 
shown some examples of pseudo-chaos in 1-d quantum transport. This
transport, induced by quantum tunneling, has no classical 
counterpart. The pseudo-chaos has no positive Lyapunov exponent 
but bears a positive component in the distribution of the local 
Lyapunov exponent. The pseudo-chaos of the Krönig-Penny model in
the applied electric field breaks the law of large numbers, leading 
to 1/f fluctuations. Chaos resulting from double-barrier structures
has proved to be of the virtual reality, since it is traced back to the 
artificial nonlinearity as a consequence of the mean-field approximation 
of the many-body interaction. 

In general, the quantum dynamics of systems with a few degree 
of freedom demonstrates periodic or quasi-periodic oscillations 
characterized by discrete energy spectra. On the other hand, there is a 
general belief that the quantum dynamics of many-body open 
systems has (i) no positive Lyapunov exponent but (ii) may have a 
nonzero generalized KS entropy extended to systems obeying the non-
commutative algebra (Connes et al., 1987), although it is not easy to 
construct an explicit example exhibiting the latter property. Eventually 
one should confirm that the present framework of quantum mechanics 
cannot yield genuine chaos characterized by positive Lyapunov 
exponents.
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Chapter 4 

Chaos and Quantum Transport 
in Open Magnetic Billiards: 
from Stadium to Sinai Billiards 

Particle motion inside or outside billiards provides a prototype of chaos 
in conservative dynamical systems. In this chapter, chaos and 
quantum transport in magnetic billiards are investigated. First, 
theoretical and experimental studies are presented on quantum 
transport in weakly-opened circle and stadium billiards in the 
perpendicular magnetic field B. While in the circle, the magneto-
conductance shows grossly regular oscillations, in the stadium it 
exhibits a transition from the mild to violent undulations with 
increase of B. The rich fluctuation features of the conductance, 
characterized by gradients of the cusp-like central peaks in 
autocorrelation functions, are attributed to the stability or instability 
of phase space in the underlying classical dynamics. 

To see other rich aspects of quantum transport, we shall move on 
to classical dynamics and quantum transport in weakly-opened
square and single Sinai billiards in a perpendicular magnetic field 
B. From comparison between the correlation field Bc of the smoothed 
conductance and Lyapunov exponents in wide B-field regions, it 
follows that fluctuation features of Bc are attributed again to the 
stability of the classical phase space. In the Sinai billiard case, the 
geometry of the billiard yields Aharonov-Bohm oscillations in a non-
smoothed conductance, suppressing symptoms of chaos. Nevertheless, 
Bc evaluated in terms of the smoothed conductance proves to mimic 
nicely the scaled variance of Lyapunov exponents. 

45
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4.1. Introduction 

Concave and convex billiards, together with a kicked rotator, are 
prototypes of conservative chaotic systems and have enjoyed a growing 
theoretical interest in fields of nonlinear dynamics and statistical 
mechanics. In the concave case, a point particle repeats alternately 
the free motion inside the cavity and the elasic collision (via specular 
reflection) at the hard wall, resulting in a complicated trajectory that 
is extremely sensitive to initial conditions. In the convex case, on the 
other hand, a particle moves between a number of convex billiards, 
e.g., as in case of Sinai's billiards (1979). The quantum-mechanical
study of these billiards is one of the important themes of quantum
chaos (Gutzwiller, 1990; Doron et al., 1991; Nakamura, 1993). The 
present and next chapters will be devoted to the quantum and 
semiclassical analyses of concave and convex billiards, respectively. 

Among concave billiards, Bunimovich's stadium billiard 
(Bunimovich, 1974; Benettin and Strelcyn, 1978) has received a wide 
attention as a paradigm of nonlinear dynamics. It belongs to the K 
system, showing the fully-chaotic orbits in marked contrast to regular 
orbits in a simple circle or rectangle. Its quantum-mechanical study 
showed the level statistics (McDonald and Kaufman, 1979) similar to 
those for the Gaussian orthogonal ensemble (GOE) and wavefunctions 
characterized by periodic-orbit scars (Heller, 1984), thereby heralding 
a new era of quantum chaos. In the presence of a perpendicular 
magnetic field, the stadium billiard becomes a generic system. The 
Meplan et al. treatment (1993) elucidated its characteristic classical 
features: The erratic and ergodic phase space in a low-field region is 
replaced by KAM tori via transitional unstable regions with increase of 
the field strength, in contrast to the circle billiard, where the phase 
space is always occupied by periodic (or quasi-periodic) and nonergodic 
orbits.

These theoretical treatments, however, have been limited to closed 
systems without any leaky region and, with a few exceptions, little 
attention has been given to corresponding studies on its open-system
version. Jalabert et al. (1990) and Baranger et al. (1991; 1993a,b) 
indeed presented both the quantal (i.e., tight-binding calculations with 
Peierls' substitution) and semiclassical theories on open concave 
billiards (e.g., circle, stadium or wedge), but they were rather 
concerned with strongly opened systems where the incoming electron 
can bounce at the cavity wall only a few times until exit. Furthermore, 
their semiclassical theory does not incorporate the effect of diffraction 
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at holes of billiards and is limited to the weak-field region. Therefore 
the difference between magneto-conductances in weakly-opened circle 
and stadium billiards is not clear at all. 

All these researches had a tendency to remain sophisticated with 
little relation to real systems. Dramatic progress in fabrication of 
nanoscale or mesoscopic structures (Beenakker and van Houten, 1991; 
Akkermans et al., 1995) has, however, been establishing a nice 
bridge between high technology and fundamental researches of 
nonlinear dynamics. Both concave and convex billiards, around which 
studies of chaos are being accumulated, can be fabricated at the interface 
layer of semiconductor heterojunctions, e.g., GaAs /AlGaAs. Finally 
Marcus et al. (1992; 1993a,b) performed a striking experiment on the 
magneto-conductance of the nanoscale stadium billiard. This 
experiment has opened a way for us to study the quantum theory of 
chaos through advanced electron transport devices. 

4.2. Magneto-Conductance in Stadium Billiard: 
Experimental Results 

At the interface of GaAs /AlxGa1 -xAs, Marcus et al. fabricated stadium-
shaped quantum dots of linear dimension -0.5 µm connected via point 
contacts with a pair of right-angled quantum wires of width ~0.14µm
; see Fig. 4.1. They also made circular quantum dots. Since a 
2-dimensional electron gas in these nanoscale billiards has a very low 
concentration (n=3.6 x 1011 cm-2) with average distance between
electrons ~ 10-2µm, one may suppress many-body effects. Further, 
owing to a relatively long mean free path -1 µm, the electronic 
motion between successive bouncings is ballistic rather than diffusive. 
The magnetic field B applied perpendicularly to the billiard plane is 
weak (e.g., B=0~2.2 T [Tesla]) so as to induce the chaotic cyclotron
motion of electrons. In fact, with a choice B =0.3T, the cyclotron radius 

is comparable to the billiard size, yielding the motion 
sensitive to both the system size and shape. We should note that, for 
the gate voltage Vg ~ -6.0V in the experiment, the incident wave 
with the corresponding Fermi wave number consists of a few 
fundamental modes. 

Figure 4.1 shows the magneto-conductance as a function of B.
Common to both the circle and stadium, the anomalous fluctuations 
are evident, strongly reminiscent of the universal conductance 
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Fig. 4.1. Experimental result for resistance as a function of magnetic field. Only 
N=l mode contributes to propagation: (a) stadium; (b) circle. Inset on upper left
in each panel is a magnification of the vicinity of zero field. (Courtesy of C. 
Marcus et al. )

fluctuations (UCF) in dirty metals. Insight into more details reveals 
abundant sharp peaks corresponding to scattering resonances, i.e., 
electronic states confined to billiards. Marcus et al. assert: For B>1.5T,
in both types of billiards, edge states are essential and Aharonov-Bohm
oscillation commonly appears; for B< Bexp

th (~0.3T), circle maintains 
regular oscillations whereas stadium demonstrates mild but 
aperiodic oscillations. Their interpretation of the intermediate region 
0.3T<B<1.5T is not obvious. In the vicinity of a zero field, the gradient
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Fig. 4.2. Chang et al's billiards, (a) circle, (b) stadium. (Courtesy of A. M. 
Chang et al. )

of the resistance peak is much smaller in stadium than in circle. 
On the other hand, by manipulating the wire-like walls (wires 

themselves are void of electrons), Chang et al. (1994) fabricated 
stadium-shaped and circle-shaped conducting cavities (see Fig. 4.2), in 
which they measured the magneto-conductance in the weak-field
range B<10-2T. In Fig. 4.2, an electron incident from the upper hole
escapes to either one of the upper or lower holes after significant 
collisions with the cavity wall. In their experiment the resistance peak 
near the zero field shows the same behavior as Marcus et al.' s.

Baranger et al. (1991; 1993a,b) have performed theoretical studies
of BCF (ballistic conductance fluctuation) and BWL (ballistic weak-
localization). Their analytical semi-classical theory predicts that the 
autocorrelation function B) of the magneto-conductance for chaotic 
systems has a universal form assuming 
an exponential distribution of classical trajectory areas A within the 
structure: N(A) exp( A) with denoting the r.m.s. of areas A.

(Note: =hc/e . ) This prediction has indeed been confirmed in 
experiments (Marcus et al., 1992, 1993a, b; Bird et al., 1994, 1995).
However, their semi-classical theory has been limited to a weak B-field
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region, where the cyclotron radius of an electron is much larger than 
device dimensions, and to high energy regions where the number of 
injected modes is large. Therefore, the quantum-classical
correspondence in wider field regions is far from obvious. Lin and 
Jensen (1996) studied the BCF of the open circle billiard by using the 
numerical semi-classical scattering theory. However, the application of 
their theory to billiards with tunable magnetic field is extremely 
complicated. At present, systematic studies on transport in open 
systems characterized by mixed phase space (e.g., open stadium and 
Sinai billiards in a magnetic field) are inevitably restricted only to 
classical phenomelogical and quantal analyses. 

4.3. Transition from Chaos to Tori 

While the experiments above are concerned with open billiards, we 
shall in this section pay some attention to closed magnetic billiards 
with no wires, investigating the cyclotron motion of an electron inside 
the cavity in terms of classical dynamics and showing its chaotic 
behavior. In this regard, we shall follow the analysis by Meplan et al. 
(1993).

Bearing a stadium shape in mind, let us denote the length of a 
straight line segment by b and the radius of a semicircle by α; b= 2
and b=0 correspond a stadium and a circle, respectively. The frequency
and Larmor radius of cyclotron motion are given by w = eB/m and
R=mv /eB=v /w, respectively. For convenience, the angular velocity
vector is prescribed as ω=w ez with ez the unit vector perpendicular to 
the billiard plane. 

Now suppose that the electron reflected at P0 on the wall impinges 
at P1 (see Fig. 4.3). Noting the rotation of the velocity vector by 2 
during the above flight, 

(4.1)

where r1 and r2 denote the position vectors for P0 and P1 respectively,
measured from an arbitrarily fixed origin on the plane. We introduce 
next unit vectors ex and ey which are parallel and perpendicular to 
r2-r1, respectively. Making the projection of (4.1) onto ex and ey , we 
obtain the Poincare' map for a pair of variables, i.e., the angle 
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Fig. 4.3. Notation of relevant vectors and angles for successive bouncings. t
is tangent vector defined in counter-clockwise direction. 

between the tangent vector and velocity vector just after each bouncing 
and the distance s of the bouncing point measured along the billiard 
boundary.

The variation of (4.1) gives the linearized Poincare' map 

(4.2)

with denoting the angle between t and an arbitrarily fixed axis on 
the billiard plane. The orbital stability analysis will be made in terms 
of (4.2). Taking a projection of (4.2) onto ex and ey, we get the tangent 
map for the variation of a pair of Birkhoff coordinates (1927) s (i.e.,
length along the boundary of the cavity) and q (=cos ) :

(4.3a)
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where M1,0 is a transfer matrix with elements 

(4.3b)

herein p =1 = ds/d is the radius of curvature at the bouncing point. 
(Note: p = at a square wall and at a circular wall.) DetM1,0=1
ensures the mapping to be area-preserving. For a trajectory executing 
n bouncings, a product sum of the transfer matrices gives the 
monodromy matrix, 

(4.4)

The Lyapunov exponent is given by the logarithm of the larger 
eigenvalue of Mn :

with

(4.5a)

(4.5b)

where L, the length of an orbit, is identified with the flight time for 
unit velocity. For TrMn >2, the Lyapunov exponent is positive,
ensuring chaotic motion; for TrMn, 2, it is nonpositive, which reflects
regular ones. Equations (4.1)-(4.4) are valid so long as the closed 
boundary of the billiard is smooth everywhere. 

In case of circle, the phase space is occupied by tori whatever 
value R takes. By contrast, in case of stadium, the phase space 
becomes mixed when the B field is switched on: For R= (i.e., B=0), an
electron repeats alternately the free straight motion and the specular 
reflection at the hard wall, resulting in chaotic motion irrespective 
of initial conditions; for R< however, the orbit is bent and the
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Fig. 4.4. Left panel for cyclotron motion within stadium. Right panel for 
convergence of Lyapunov exponent. R= =1/2: (a), (c) regular orbit; (b), (d) chaotic 
orbit. (Courtesy of O. Meplan et al.) 

electron launched at a left edge of the stadium executes either regular 
(Fig. 4.4(a)) or chaotic (Fig. 4.4(b)) motion, depending on the direction 
of the initial velocity vector. Figures 4.4(c) and (d), which correspond 
to Figs. 4.4(a) and (b), respectively, show the Lyapunov exponent in
(4.5a) as a function of the bouncing number n. For the regular orbit, 

turns out tending to zero in the limit n (see Fig. 4.4(c)). 
Extensive numerical analyses suggest that, in the case of stadium, 
the global chaos persists in the range >R>Rcl

th with Rcl
th~1.53 or,

more precisely, the measure of KAM tori begins to take a finite value 
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at R=Rcl
th. A question naturally arises: How is the (continuous)

transition from chaos to tori in the classical dynamics reflected in the 
spectrum of Fig. 4.1 ? Before investigation of this intriguing problem, 
we should also get acquainted with the quantum-mechanical results 
described below. 

4.4. Quantum-Mechanical and Semiclassical Theories 

To examine the implication of the Marcus et al. ’s experiment, we shall 
here present quantum theory on the transport in open concave 
billiards in a perpendicular magnetic field (Nakamura et al., 1994). A 
pair of semi-infinite lead wires j =1 and 2 are joined to the leaky holes 
of the billiard on its right and left sides, respectively (see Fig. 4.5(b)). 
[ Although this wire geometry which was also used in the open billiards 

Fig. 4.5. Contour map for wavefunction in case of complete transmission: 
(a) circle with B/B 0=12.2604, (b) stadium with B/B 0=12.6489.
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without magnetic field (Nakamura and Ishio, 1992) is different from 
the one in Marcus et al. 's experiments, qualitative features of the 
magneto-conductance will depend on the billiard's shape rather than 
the wire geometry.] This open system is characterized by a, b, and d
for semicircle radius, line segment length, and width of holes at 
x=a’j=(-1)ja' , respectively, taking the origin at the center of the billiards.
Note We shall choose the stadium with b=2
where the maximum Lyapunov exponent is available, and the circle 
with b=0, while keeping fixed the area of the billiard and
the degree of opening =0.1497 common to both types. (In this 
case, d/(2α)=0.2 and 0.1327 for the stadium and circle, respectively.)
This degree corresponds to a weakly-opened situation suitable to 
uncover the ample fluctuation properties of quantum transport. We 
shall be concerned with tuning the strength of magnetic field. For 
convenience, the circle and stadium will be abbreviated hereafter as Cl
and Sd, respectively. The region inside the billiard wall and within 

will be prescribed as the cavity region. Nonlinear dynamics of 
electrons in this region will have an outstanding effect on the S matrix
and quantum transport, and our major interest lies in this effect. 

For brevity, suppose the field B applied only to the cavity region 
and no field in the wire regions. We prescribe the velocity of light c=1.
The essential quantities are cyclotron frequency and magnetic length 
given by w=eB /m and respectively. We choose the gauge 
potential in the Landau gauge, A=(0,-Bx , 0) , which continuously
changes to the constant value A=(O, -B ‘j, 0) at the wires.

For an electron with Fermi energy the wavefunction 
 satisfies Schrödinger equation 

(4.6)

For the incident propagating mode n at the wire 1, (r) at wires j=1
and 2 is written in terms of S matrix {S(j)

mn} as

(4.7)

with the transverse component 
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(4.8)

Here the wave vector is defined by with m /d and
for the transverse and longitudinal components, 

respectively. Modes m for 1 m N and for m >N with N = 
correspond to propagating and evanescent waves, respectively. 

In the cavity region, on the other hand, the Green function is 
given by (Feynman and Hibbs, 1965; Ueta, 1992) 

(4.9)

where w is a scaled energy and W is the Whittaker 
function of 

To determine the values for S matrix, we exploit Green's theorem 
which yields the equation including integrations along the closed 
boundary C of the cavity region: 

(4.10)

where r and r' lie on C and signifies the outward-normal
derivative on C; and (r) denote Cauchy's principal value and the 
interior angle at r, respectively. In (4.10), no contribution from the 
bulk integration arises, since r also locates along C.

We shall here apply the boundary element method: The boundary 
of the cavity region is approximated by a sequence of small line 
segments. Then functions in the integrand along each integration 
segment in (4.10) are approximated by their linear interpolations: For 
a segment connecting ri and ri+1, for instance, 

(4.1la)
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where
(4.1 1b) 

with -1 1. Substituting into (4.10) G(r, r'; ) from (4.9), its normal
derivative, and expressions from (4.11), we find 

(4.12)

where J, P and Q are numerical coefficients and the boundary 
condition rL+1 =r1 is imposed. Among unknown variables and 

=0 is satisfied at the wall and  and      at the holes j=1 and 2
are rewritten in terms of S matrix as: 

(4.13b)

Using these notions in (4.12), we eventually obtain a set of linear 
equations for unknown variables S(1) , S(2), and wall , whose
solutions lead to the flux-normalized transmission coefficient tmn =

S(2)
mn and the magneto-conductance g(B)=(2e2 /h)

Similarly, wavefunctions are available by substituting the solution 
for S(j) and wall into (4.10) with r taken inside the cavity region 
together with a new choice (r) =2

Semiclassical Treatment 

Before proceeding to the numerical analysis, we shall mention a way of 
deriving the semiclassical formula for S matrix. In open billiards, a 
point particle escapes to exit wires after being temporarily confined 
within the cavity, which is distinct from situations in closed billiards. 
Owing to this fact, one will be free from the problem of the divergence 
(i.e., exponential proliferation coming from summation over infinitely-
long periodic orbits) proper to Gutzwiller's semiclassical trace formula 
(1990). Since our major concern in this chapter lies in the quantum-
mechanical explanation of the experimental results, the semiclassical 
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approach will be briefly presented below. 
Suppose an electron enter in mode n from the wire 1 and escape in 

mode m to the wire 2. The quantum-mechanical expression for a 
transmission element of the S matrix is then given by (Baranger et
al., 1991; 1993a,b)

(4.14)

where y' and y" are coordinates at the entrance and exit, respectively, 
on the boundary C, with corresponding x coordinates fixed as x'= 
and  x''=                                                      denote   transverse
components of the wavefunctions at junction points (see (4.8)) and 
the Green function through the cavity, respectively. Finally, vn(v’) and
vm(v’’) are parallel (to wires) components of velocities for modes n
and m, respectively.

The semiclassical 0) approximation to (4.14) will be made as 
follows: We first replace G(y’’, y') by the semiclassical Green function: 

The symbols { (y)} and G(y ‘’, y') 

(4.15)

where the summation is taken over all the classical orbits starting at 

y' and ending at y''. In (4.15), S
Jj p• dq) , (= det

|v’v’’| ), and 2 µ j / are reduced action, inverse of the Jacobian, and 
Morse-Maslov index, respectively. Using (4.15) in (4.14) and
evaluating the double integrals in (4.14) by a saddle-point method, we 
reach the semiclassical result 

j
(4.16)

where D j = and with = ± m; and are

length of orbit j and Fermi wavelength, respectively. The summation 
in (4.16) is taken over all the isolated open orbits satisfying the 
saddle-point condition (py .

For the actual computation of (4.16), one should vary the value y'
and have an assembly of orbits that satisfy py'  = h and py ''

 =
at the entrance and exit, respectively. The Poincare' map in (4.1) will
be a convenient tool for obtaining these orbits. After finding orbits, we 

-½
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should resort to the linearized Poincare' map connecting between 
variations at the initial and final points (see (4.3) and (4.4)), obtaining 
the derivatives as . For instance, noting =0, at the 

entrance and at the exit, one finds Dj= All these
results will be used as input in (4.16). A further explanation of 
details will be omitted here. 

4.5. Comparison in Stadium Billiard between Theory and 
Experiment

We shall now embark upon describing the numerical issue derived 
from quantum theory and interpreting Marcus et al. 's experimental
results. Assume an injection of a single-mode (N=1) by choosing
=1.2. Taking B0=(hc/e)/A as a unit of the magnetic field, the scaled 
magnetic field B /B0 will be varied between 1.72 and 27.62. In terms of 
Larmor radius R(= this regime corresponds to 
0.39<R/ <6.23, which obviously covers both fully-chaotic and 
transitional regions in case of Sd billiard (Meplan et al., 1993).

Figure 4.5 shows typical wavefuction features in the case of the 
complete transmission. In the Cl billiard, consists of structures 
with a partially-broken circular symmetry (see Fig. 4.5(a)). The 
circularly-symmetric pattern changes regularly as B is varied. In the 
Sd billiard, by contrast,   shows no symmetric patterns (Fig. 4.5(b)), 
indicating the aperiodic variation of patterns with change of B. As
seen below, this variation yields a rich structure of g(B).

Figure 4.6 displays the conductance g(B). Both billiard types 
commonly exhibit very noisy fluctuations, reminiscent of the 
universal conductance fluctuations in dirty metals. These anomalous 
fluctuations, regardless of the integrability and nonintegrability, are a 
typical feature of weakly-opened systems where locations of highly 
concentrated poles for S matrix in the complex plane are sensitive 
to the change of B field. On closer examination, however, we find a 
clear difference between two billiard types: In Cl billiard, the frequency 
of fluctuations of g(B) remains unchanged throughout the B-field
range in Fig.4.6(a). This result is consistent with the feature of the 
underlying classical dynamics where the phase space is occupied by 
tori whose structure is displaced regularly with a B field. In Sd
billiard, on the other hand, g(B) exhibits slow and extremely rapid 
oscillations in the low and higher field regions, respectively (see Fig. 
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Fig. 4.6. Quantum conductance g(B): (a) circle, (b) stadium. 

4.6(b)). This qualitative feature is in an excellent agreement with the 
experiments of Marcus et al. on a right-angled wire geometry. The 
threshold distinguishing two distinct oscillations lies around B /B 0=7.0.
This result can be understood by noting the structural stability of the 
classical phase space. In fact, for B< 7B0, R >1.53 and orbits are fully
chaotic. As a result, the phase space is globally occupied by the 
ergodic sea which feature is insensitive to the variation of B,
consistent with the insensitivity of the quantum transport against 
B. On the other hand, for B>7B0, the ergodic part begins to be
replaced successively by the KAM tori and thereby the phase space 
shows an extreme sensitivity to the variation of B, which explains a 
rapid variation of g(B).

To characterize the fluctuation of g(B), the autocorrelation 
functions have been computed 
for both the low and high reference fields (see Fig. 4.7); 
means the average over referenced B fields. Both Cl and Sd billiards
are commonly accompanied by the cusp-like central peaks proper to 
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Fig. 4.7. Autocorrelation functions Reference ranges are 
0<B/B0< 7 (solid line) and 7<B /B 0 (broken line): (a) circle, (b) stadium.

generic systems (see Chap. 2 and Lai et al.(1992)). While for Cl
billiard (see Fig. 4.7(a)) the gradients of the cusps are the same in 
both the low and higher field regions, for Sd billiard (see Fig. 4.7(b)) 
the obvious difference exists between the gradients in low and higher 
reference fields: A long-range correlation and a rapid decrease of the 
correlation are obvious in the low-field and higher-field regions, 
respectively.

In order to see the quantum-classical correspondence, we calculate 
the classical conductance gcl(B): In accordance with the transverse 
component of the incident propagating mode in (4.7) and (4.8), an 
electron is supposed to lie at the hole 1 with the occupation probability 

We then compute the rate of its escaping to the wire 2 after
significant classical bouncings off the wall, and finally obtain gcl(B) in
Fig. 4.8. For comparison, we also construct a smoothed version gqt(B)
by coarse-graining of g(B). (Smoothing is done here by averaging 
g(B) over each interval of B/B 0=0.7, with successive intervals chosen 
by shifting the preceding one by B/B 0 =0.1.) The quantity gqt(B) more
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Fig. 4.8. Coarse-grained quantum conductance gqt (solid line) and classical 
conductance gcl (broken line): (a) circle, (b) stadium. 

evidently shows periodic (Fig. 4.8( a)) and a periodic (Fig. 4.8(b)) 
alignment of peaks in Cl and Sd billiards, respectively, while gcl(B)
proves to reproduce a gross feature of gqt(B). In particular the location 
of peaks in gqt are mostly identical with those of gcl(B) in both of Cl
and Sd billiards except for the peaks around B/B 0=5.5 and 8.5 in
Fig. 4.8(a). Thus the bouncing Larmor-orbit picture recovers a gross 
feature of the quantum conductance. 

Let us consider a stadium with semicircle radius =0.1µm. 
Then =7.14x 10-2 µm2 and B 0=0.058T, and the transition point
corresponds to 7B 0~0.3T, in nice agreement with Marcus et al.' s
assertion. In a real experiment, on the other hand, =0.5µm and 
therefore B 0 =0.0023T. The transition point is now Bqt

th ~7B0 ~0.016T,
less than the experimental value Bexp

th~0.3T by more than an order
of magnitude. It is not easy, however, to clearly specify the transition 
point by glancing over the spectrum in Fig. 4.1. In fact, one might 
assign a transition point less than 0.3T. Although a quantitative 
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agreement between theory and experiment has not yet been attainable, 
behaviors in Figs. 4.6-4.8 are in accord with those in Fig. 4.1, at 
least qualitatively, and it is true that Marcus et al 's experiment should 
have captured a quantum signature of chaos. 

The magneto-conductance g(B) in open Cl and Sd billiards has 
proved to be related to the behaviors of classical dynamics. It shows 
fluctuations dependent largely on the stability of phase space in the 
underlying classical dynamics of closed billiards. While in the Cl
billiard the regular modulation of periodic orbits in the phase-space
structure gives rise to regular oscillations of g(B), the global chaos 
and genesis of successive tori with increase of B in the Sd billiard
are responsible for slow and rapid variations of quantum conductance, 
respectively. The gradient of the cusp-like central peak in the 
autocorrelation function characterizes rich fluctuation properties of g(B).
The present result is qualitatively consistent with Marcus et al .’s
experiment on a different wire geometry. Further, using the bouncing 
Larmor-orbit picture, we have derived the classical conductance, which 
turns out to reproduce most of the locations of peaks in the 
coarse-grained version of g(B).

Real nanoscale structures are accompanied by extrinsic 
randomness, e.g., corrugation of walls, impurities and thermal noises. 
The rapid progress of advanced technology will smear out these 
obstacles that prevent us from a simple comparison between theory 
and experiment. The quantum theory of chaos is thus entering an 
era which will see its experimental test in stages for quantum 
transport in mesoscopic devices fabricated by the present-day high 
technology. Currently, theoretical interests focus on: (1) showing a 
universality of conductance fluctuations on the basis of random matrix 
theory; (2) deriving the S matrices directly by extending the 
Gutzwiller's semiclassical trace formula to open systems. 

Nevertheless, the observed magneto-conductance would demand 
much deeper insight: The discrepancy of the transition point by more 
than order of magnitude between theory and experiment is serious, 
and one should meet the challenge to solve this puzzle which can be 
explained by neither the semiclassical nor quantum theory. 

Before closing this section, we should mention the latest progress 
in measurements of mesoscopic conductance fluctuations in quantum 
dots. Chang et al. (1995) provided the experimental test on the 
statistical distribution of peak heights in the conductance inside the 
Coulomb blockade regime. This regime, where lifetime broadening is 
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less than the mean level spacing and the electrostatic energy e2/C of
the dot with capacitance C is larger than the applied bias, differs 
from the one treated hitherto, where many electronic levels contribute 
to the tunneling process. On the contrary, they observed the transport 
mediated by quantum tunneling through a single eigenstate of the 
dot. Since the Coulomb interaction in these region is comparable to 
the level spacing, the essential statistical quantity is the peak heights 
Gmax rather than the level spacings, while the peak positions are 
absolutely stable and reproducible. Chang et al. observed Coulomb 
blockade peak heights as a function of magnetic field and gate voltage 
by tuning the temperature and coupling to leads. Then they proceeded 
to examining the statistical properties of the peak heights. The non- 
Gaussian distribution they elucidated is amazing (see Fig. 4.9); it has 
not been seen in the case of level spacing distribution. To be explicit, 

let us introduce the scaled height by 

(4.17)

where is the partial decay width into the left (right) lead. For 
B=0, the distribution PB=0 (a) has proved to obey

(4.18)

exhibiting the square-root singularity near zero. In a magnetic field 
greater than the correlation field, the breaking of time-reversal
symmetry reduces the number of near-zero values of Gmax.
Nevertheless, the distribution is still non-Gaussian and peaked near 
zero:

(4.19)

where Kn are the modified Bessel functions. This contrasts with the 
Gaussian distribution of peak heights for typical metallic dots, where 
many levels are involved in the tunneling. 

Folk et al. (1995), besides confirming the above issue, showed that 
the autocorrelation function of peak height fluctuations agrees with 
the Lorentzian-squared form for the unitary ensemble. 

These results address several interesting issues to be explored 
further by theoreticians. However, a question should be raised: The 
word "quantum chaos" should be used in cases where the underlying 
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Fig. 4.9. Histograms of conductance peak heights for (a) B=0 and (b) B 0. Note
the non-Gaussian shape of both distributions and the strong spike near zero in 
Fig. 4.9(a). Fits to the data using both the fixed pincher theory (solid) and the 
theory averaged over pincher variation (dashed) are excellent. The insets show 
fits to a more Gaussian distribution averaged over the pincher 
variation; the fit is extremely poor. (Courtesy of A. M. Chang et al.)

classical dynamics exhibits chaos characterized by a positive Lyapunov 
exponent and a non-zero Kolmogorov-Sinai entropy. In the present 
Coulomb blockade case where Coulomb interaction gives rise to the 
many-body effect, what is the origin of chaos? One reasonable answer 
would be that both the many-body effect and the boundary effect of the 
small dot will be responsible for the genesis of chaos. 
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4.6. Open Sinai Billiard in Magnetic Field: Distribution of 
Lyapunov Exponents and Ghost Orbits 

As stated in the introduction of the present chapter, recent advances 
in microfabrication technology have allowed physicists to study the 
conducting properties of ultra-small electrical circuits with length 
scale much shorter than both elastic and inelastic mean free paths 
but larger than the Fermi wave length (Beenakker and van Houten, 
1991). These ballistic electron devices have attracted much interest as 
a probe of "quantum chaos," i.e., the quantum signature of classical 
chaotic scattering. The transport properties of ballistic conductors 
are strongly influenced by geometrical features of the system. In these 
devices aperiodic fluctuations of conductance as a function of 
magnetic field B have been observed (Marcus et al., 1992, 1993a,b; 
Bird et al., 1994, 1995), which are reminiscent of UCF (universal 
conductance fluctuation) in diffusive regimes. The fluctuation is 
caused by the frequent resonant scattering proper to weakly opened 
devices.

In the remaining part of this chapter, we shall present quantum 
and classical analyses of transport in the open square and single Sinai 
billiards (Fig. 4.10) in a perpendicular magnetic field B (Kawabata
and Nakamura, 1997). ( The phase space of a classical particle moving 

Fig. 4.10. Open Sinai billiard in magnetic field and bouncing orbit. 
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in the closed Sinai billiard is always ergodic and chaotic for B =0
(Sinai, 1979) but becomes mixed for B 0.) We concentrate on a single 
mode injection and explore the quantum-classical correspondence. 
This open system is characterized by the parameters L , a, and d for 
dimension of square wall, radius of circle wall, and width of a pair of 
conducting quantum wires attached to the square walls, respectively. 
The Aspect ratio is defined by    and the degree of opening

is given by . For comparative study, we shall choose 

0 (for square billiard) and =11/36 (for Sinai billiard) with ~0.1 for 
each. This degree of opening corresponds to a weakly-opened
situation suitable to uncover the ample fluctuation properties of 
quantum transport. 

First, in order to examine the features of classical billiards, we 
calculate the dwelling time distribution. Figure 4.11 shows a spectrum 
of the time (or path length during which an electron with a 
given injection angle incident from the left lead wire, dwells inside 
the billiard until exit. We take as a unit of the magnetic field, 
where (=hc /e) is the magnetic flux quantum. For the square billiard, 
the spectrum exhibits a simple structure which consists of a few 
plateaus in a weak B field region (Fig. 4.11(a)). As B is increased, 
however, the spectrum exhibits, besides plateaus, fine comb-like
structures responsible for chaotic motion (Fig. 4.11(b)). The plateaus 
here are concerned with a family of the short dwelling time orbits 
bouncing off the wall only a few times until exit. These orbits, which 
provide anomalous Lyapunov exponents (see below), are characteristic 
of open systems and hereafter will be called as "ghost orbits. ” In the 
high field region, electron orbits are restricted to the vicinity of the 
wall. Therefore their classical phase space is occupied by K.A.M. tori, 
so that no fine structure can be perceived in the spectrum (Fig. 4.11(c)). 
On the other hand, in the case of Sinai billiard, the spectrum shows 
fine comb-like structures already in a weak field region (Fig. 4.11(a’)), 
in contrast to the case of square billiard. As B is increased, plateau 
structures intervene fine comb-like structures (Fig. 4. 11(b')), which is 
similar to Fig. 4.11(b). A further increase of B smears out any fine 
structure in the spectrum (Fig. 4.11 (c')). 

Next, in order to quantify the degree of non-integrability, we 
calculate the B dependence of Lyapunov exponents for an assembly of 
scattering (not periodic) orbits. The Lyapunov exponent of any classical 
trajectory is calculated from the tangent map which corresponds to 
the linearized Poincare' map. The tangent map for a charged particle 
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Fig. 4.11. Dwelling time spectrum for open billiards. Abcissa denotes initial 
location (vertical coordinate of electron. Data on positive (0 < 
y'(=y+d /2) < d) and negative (-d<y'(=y-d/2) < 0) regions correspond to =0.337rad 
and -0.337rad, respectively. Left panel for open square billiard: (a), (b), and (c) 
are for BL2/ =0.1646, 81.38, and 325.7, respectively; right panel for open 
Sinai billiard: (a')- (c') are the same as (a)-(c).

inside the present Sinai billiard in a perpendicular magnetic field is 
already given in (4.3) with Larmor radius R=mvf/eB. While (4.3) 
was originally invented for billiards with continuous boundary, it 
holds as well for the present Sinai billiard by taking the radius of 
curvature at each bouncing point as pi= at a square wall and ρ|i =
at a circle wall. For a trajectory that takes n steps before exit, the 
monodoromy matrix is given by Mn in (4.4). The Lyapunov exponent 
is given by (see (4.5)), where the length of an orbit, is 
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identified with the dwelling time for unit velocity. 
In order to calculate the average Lyapunov exponent we inject 

2000 particles which start in equal spacing at the left lead wire. Here 
the average and variance (see below) of Lyapunov exponents are 
calculated directly without resorting to Ruelle-Bowen's pressure 
function (Bowen, 1975; Ruelle, 1978). Figure 4.12 shows the B 
dependence of In the case of square billiard without the circular 

obstacle (Fig. 4.12(a)), as B is increased, is vanishing for B < Bth

(-1.3) and suddenly increases at B=Bth. The global feature is 
accompanied by a dip at B~4.536 and by a hump at B~54.43. This
complicated structure is attributable to the existence of ghost orbits 

Fig. 4.12. Average Lyapunov exponent as a function of magnetic field: (a) open 
square billiard (b) open Sinai billiard 11 /36). The dashed-dotted line 
represents a power-law fitting for the numerical curve (solid line). 
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which stay for a short time in the billiard and therefore have ill-
converged small and large Lyapunov exponents for a dip and a hump, 
respectively. By contrast, in the case of Sinai billiard (Fig. 4.12(b)), 
decreases monotonically with increasing B, describing a continuous 
transition from chaos to tori. We obtain a power law B-" with n=1.18
from the power-law fitting to the numerical curve. The average <λ > is
much larger here than for the square billiard. Ghost orbits have 
proved to play a minor role in the stadium billiard. 

The above fact indicates that in the Sinai billiard case the 
classical phase space is globally stable against B , while in the square 
billiard it is globally unstable. 

4.7. Comparison in Sinai Billiard between Quantal and 
Classical Theories 

To see the quantum-classical correspondence, we consider a two- 
dimensional tight binding model of width L, connected to perfect lead 
wires across point contacts. We assume hard-wall confinement in the 
transverse direction of the wire. A single antidot potential with 
diameter is placed at the middle of the square billiard (quantum dot). 
The Hamiltonian of the model is given by (Kawabata and Nakamura, 
1997)

(4.20)

where cn,m and cn,m
+ are creation and the annihilation operators for an 

electron at the lattice site (n,m) and t is the transfer integral. A 
magnetic field B is included in a Peierls phase factor of the transfer 
integral as where is the lattice constant. We calculate 
the transmission coefficient by use of the recursive Green function 
method (Fisher and Lee, 1981; Lee and Fisher, 1981). The conductance 
G(B) is calculated by the Landauer formula (Landauer, 1957; Buttiker 
et al., 1985). (Note: A capital letter G will be used hereafter so as to 
be distinct from the designation for the stadium billiard in the first 
half of this chapter.) The length of the dot is chosen as L=36 We
concentrate on a single mode injection and choose in order 
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to identify the incident angle from the lead with the one used in the 
classical analysis. Figure 4.13 shows the B dependence of G(B). Both
billiard types commonly exhibit aperiodic fluctuations, reminiscent 
of the universal conductance fluctuation in dirty metals. These 
anomalous fluctuations are typical features of weakly opened 
systems regardless of their integrability and nonintegrability. In 
the case of Sinai billiard (Fig. 4.13(b)), the geometry forms an 
Aharonov-Bohm ring, so that A-B oscillation is observed in a weak 
field region. This feature is more pronounced in the Sinai billiard 
with =14/36 (see Fig. 4.13(b’)). The regular A-B oscillation has a 
tendency to smear out the quantum analogue of the transition 
between chaos and tori. In order to see the global variation of 
conductance, we, therefore, shall calculate the coarse-grained
conductance. Coarse-graining is achievedby by averaging G(B) over
the interval around each value B. Generally speaking, 
coarse-grained conductance corresponds to low frequency components 
of G(B). Let us denote low frequency components of G(B) as Gcb(B)
and high frequency components of G(B) as G(B)-Gcg (B). In the square 
billiard =O), Gcg(B) shows a large-amplitude oscillation in a regime 
B<25 ]. On the other hand, in the Sinai Billiard =11/36), Gcg (B)
keeps a mild modulation as B increases in the same B region. This 
difference is relates to the feature of the underlying classical 
dynamics, that will be described below. 

To characterize the fluctuations, we have calculated the auto-
correlation function 

(4.21)

with G(B) = G(B)-<G(B)>B. The angular bracket indicates an average 
over a suitably large field range. The correlation field Bc is then 
defined as the half-width of the correlation function C(Bc)=C(0)/2.
There exist two kind of Bc s. Firstly, Bc of Gcg (B) is concerned with the 
strength of long-range correlation of G(B). On the other hand, the 
global stability of the classical phase space against B is represented 
by the average Lyapunov exponent < λ >, by taking the initial variation
of each orbit as induced by a small change of B. Therefore, Bc of Gcg(B)
is expected to be comparable to < λ >. Figure 4.14(a) shows the B
dependence of Bc. In the case of a square billiard, as B is increased, Bc

varies irregulary. By contrast, in the case of a Sinai Billiard, Bc

decreases monotonicaly with increasing B and therefore captures a 
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Fig. 4.13. Magneto-conductance as a function of magnetic field. Thick solid line 
represents coarse-grained conductance: (a) square billiard 0), (b) Sinai billiard 

=11/36), (b’) Sinai billiard =14/36). 
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continuous transition from chaos to tori. In Fig. 4.14 we show 
comparison between Bc and <λ> both as a function of B. The B
dependence of Bc is in good agreement with that of in both billiard 
cases. However, there is a quantitative discrepancy between classical 
and quantal peak positions in the case of a square billiard. This 
discrepancy is caused by quantum-mechanical effects, e.g., finiteness
of the Fermi wave number or diffraction at holes of billiards. 

Secondly, Bc for G(B)-Gcg (B), corresponding to the high frequency 
component of conductance fluctuation, is much smaller than the 
period of A-B oscillation (~1.7[ /L 2]) and related to the strength of

Fig. 4.14. (a) Correlation field of Gcg (B) as a function of the magnetic field. 
Solid line with open circles for square billiard 0) and dotted line with filled 
circles for Sinai billiard 1 1 /36). (b) Average Lyapunov exponent as a function 
of magnetic field. Solid line for square billiard 0) and dotted line for Sinai 
billiard 11/36). 
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Fig. 4.15. Same as in Fig. 4.14 but for correlation field of G(B) -Gcg (B)
(Fig.4.15(a)) and for scaled standard deviation of Lyapunov exponents 
(Fig.4.15(b)).

short-range correlation of G(B). Meanwhile, the local stability of the 
classical phase space against B is represented by the scaled standard 
deviation of Lyapunov exponents 

(4.22)

Therefore, Bc of G(B) - Gcg (B) is expected to be comparable with . 
Figure 4.15 shows the comparison between Bc and In Fig. 4.15(b) 
we show the B dependence of . On comparison of square and Sinai 
billiards, of the square billiard turns out to be larger than that of 
the Sinai billiard. Moreover, noisy fluctuations and a hump structure 
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can can be perceived only in the square billiard case. The origin of 
noisy fluctuations lies in the extreme sensitivity of local phase 
structures with respect to B, while a hump can be explained as an 
influence of the ghost orbits. In the case of a Sinai billiard, conversely, 
we can recognize that the local structure of phase space is stable again 
against B and that both Bc and do not show significant variations 
with respect to B. One may conclude that, as a whole, the behavior of 
Bc nicely mimics that of . Quantitative discrepancy of the 
position of a hump can also be interpreted in terms of quantum 
mechanical effects. 

The latest and most interesting discovery concerning the single 
Sinai billiard is that of the semiclassical formula for the Al'tshuler-
Aronov-Spivak effect in the magneto-conductance for the Sinai billiard 
with Aharonov-Bohm flux threaded only through the hollow. For 
details, see Kawabata and Nakamura (1996). 

4.8. Summary 

The conductance g(B) in weakly-opened Cl and Sd billiards has been 
shown to reflect the phase-space structure of classical dynamics. 
Fluctuations of g(B) depend largely on the stability and instability 
of phase space in the underlying classical dynamics of closed 
billiards. The global chaos and genesis of successive tori in the Sd 
billiard with increasing B are related to slow and rapid variations of 
quantum conductance, respectively. The autocorrelation function 
characterizes rich fluctuation of g(B). Although the classical and 
quantal results are qualitatively consistent with Marcus et al .’s
experiment on a different wire geometry, the observed magneto-
conductance would demand a much deeper insight: The discrepancy 
between Bqt

th (~Bcl
th ) and Bexp

th in spectral properties is very serious, 
and some challenge is required to solve this puzzle. 

In this chapter, the comparative studies on the Lyapunov 
exponents and magneto-conductance G(B) in open square and Sinai 
billiards have also been developed. They show that conductance
fluctuations depend largely on the stability of a mixed phase space in
underlying classical dynamics. In the Sinai billiard case the classical 
phase space is globally stable against B, while for the square billiard 
it is globally unstable. The smoothed (coarse-grained) conductance 
Geg (B) reveals a continuous transition between chaos and tori. In the 
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case of a square billiard, the correlation field Bc of the smoothed 
conductance is shown to vary irregularly with respect to B, while in 
the case of a Sinai billiard it decreases monotonically with increasing 
B. To be precise, two kinds of correlation fields Bc s are relevant: 
Bc of Gcg(B) (low frequency component) and that of G(B) - Gcg(B)
(high frequency component) have turned out to mimic the average 
Lyapunov exponent <λ> and scaled standard deviation of Lyapunov
exponent respectively. The fluctuation of Bc in the case of a 
square billiard is attributed to the ghost orbits proper to a scattering 
(not periodic) orbit. In the Sinai billiard case, the geometry of the 
billiard forms an Aharonov-Bohm ring so that an A-B oscillation is 
observed in a weak field region. While the A-B effect suppresses a 
symptom of chaos, both Bc s for Gcg(B) and G(B) - Gcg(B) nicely
capture the quantum-classical correspondence. These results are 
anticipated to be observed experimentary in nanoscale quantum 
dots. Research in many other directions, both theoretical and 
experimental, is also in progress. Readers are encouraged to refer to a 
collection of reviews by many active scholars in this field (Nakamura, 
1997).
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Chapter 5 

Chaotic Scattering on 
Hyperbolic Billiards: Success of 
Semiclassical Theory 

In this chapter we present semiclassical and exact quantum theories of 
a point particle bouncing off C4v four-disk billiards which exhibits 
chaotic scattering in classical dynamics. It is demonstrated how the 
semiclassical theory is superior to conventional quantum theory. The 
zeta function in the semiclassical trace formula is calculated by using 
cycle expansions with respect to periodic orbits up to period three in 
the number of bounces. Its complex poles provide resonances which 
are in excellent agreement with the exact quantum resonances in a 
wide range of wave numbers An assembly of resonances lying 
parallel and close to the real axis indicates that the distribution of 
the imaginary part of the resonances presents a threshold and consists 
of a sequence of small bands below the threshold. Consequences of 
these resonances on the dynamical behavior of mesoscopic devices are 
discussed. A survey on the monumental experiment by Weiss et al. 
(1991, 1993) on the Sinai billiard in the presence of magnetic field is 
also given. 

5.1. Introduction 

N. Krylov, a Russian sientist, was the first to study the chaotic scatterring 
of a point particle on the surfaces (with negative curvature) of convex 
billiards (Krylov, 1979). The motivation for his reasearch was to give 
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a proof of the ergodicity and mixing which constitute a foundation of 
statistical mechanics. While he died young at age 29, in 1947 and 
three quarters of a century have since passed, the chaotic scattering by 
hyperbolic (defocusing) billiards is nowadays widely studied in physics 
and advanced high technology as well as in mathematics. As examples 
of convex billiards, one may discuss Sinai's billiard, i.e., a triangular 
array of identical hard disks (Fig. 5.1(a)) and a crossroad where four 
hard disks are placed with C4v symmetry with four wires inserted
between disks (Fig. 5.1(b)). Both examples can be fabricated at interface 
layers of nano-scale semiconductor hetero-junctions, once the hard 
disks are regarded as regions void of electrons. In fact, regular arrays 
of hard disks are called as anti-dot systems in advanced technology of 
electron transport devices (Beenakker and van Houten, 1989). In this 
context, the semiclassical and quantum analogue of chaotic scattering 
constitutes a challenging subject of "quantum chaos " (Gutzwiller, 1990; 
Giannoni et al., 1991; Nakamura, 1993). 

On the other hand, measurements of electric conductance, Hall 
resistivity, and other quantum transport properties have accumulated 
on the so-called crossroad in the GaAs/AlGaAs interfaces (see Fig. 
5.1(b)). The four corners of the crossroad consist of electron depletion 
regions which correspond to C4v four convex hard-disks in the limit 
where the potential at the border of the circuit is very steep. While 
some theoretical studies aim at applying Gutzwiller's semiclassical 
trace formula to the crossroad problem, their outcome (e.g., on 
conductance) is not in good agreement with experimental results 
(Beenakker and van Houten, 1989). This discrepancy would be due to 
the serious diffraction effect at the leaky regions connected with 
straight lead wires. 

In this chapter, to capture the fluctuation properties truly 
attributable to chaotic scattering, we shall develop both semiclassical 
and exact quantum theories for a point particle scattered by a model 
system consisting of C4v -symmetric four identical hard disks (radii 
and inter-disk distances R) with all its attachments discarded so as 
to suppress the effect of diffraction (see Fig. 5.1 (c)). In this simplified 
system, the semiclassical theory of chaos or the so-called Gutzwiller's 
trace formula is extremely powerful. The reason is: (1) The system is 
fully chaotic without exhibiting any bifurcation, and therefore the 
symbolic dynamics predicts all the periodic orbits systematically; (2) 
due to the open-system nature, only short-periodic orbits contribute 
substantially to the trace formula, suppressing a serious problem of 
exponential proliferation described in Chap. 2.
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Fig. 5.1. (a) Sinai billiard, (b) Crossroad, (c) C4v hard disk system. 

Before developing the quantum and semiclassical theories, we 
should note that the classical properties of hard-disk systems are well 
characterized by mathematical tools like the Perron-Frobenius
operator, topological pressure functions, and other characteristic 
quantities (Ruelle, 1978, 1986; Walters, 1981; Gaspard and Rice, 1989 
a, b, c; Doron, Smilansky and Frenkel, 1991; Gaspard, Nakamura, and 
Rice, 1991; Rice, Gaspard and Nakamura, 1992). In particular, in 
systems with more than two hard disks, unstable orbits trapped between 
disks constitute a fractal set with zero Lebesgue measure in three-
dimensional phase space. (Three coordinates are, for instance, particle 
positions x, y, and the angle of the velocity vector with respect to x
axis.)

Assume a system of convex hard disks lying within the large 
circular area with radius The escape rate y of a point particle 
moving outside of is expressed, in terms of KS entropy hKS and the
sum of positive Lyapunov exponents as 
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(5.1)

(Eckmann and Ruelle, 1985). y >0 is guaranteed, since λ >hKS. This
implies the existence of an upper limit for the confining time. On the
other hand, let us consider a gas of particles confined initially 
between disks inside and eventually escaping outside . The
particle density function f satisfies inside a diffusion equation
(with diffusion coefficient D)

(5.2)

with the boundary condition f=0 outside . By assuming a long-time
behavior with the solution, f~exp(-y t), one obtains the relationship

(5.3)

Combining (5.1) and (5.3), one arrives at (Gaspard and Nicolis, 1990) 

(5.4)

D proves to be nonvanishing owing to the presence of the lower limit 
for y .

The Lyapunov exponent λ strongly depends on the degree of
opening of the system, Figure 5.2 shows the dependence of 

for several unstable periodic orbits p in the four-disk system to be 
explained in Table 1 below. We find A decreases with increase of In 
case and hence decreases with increase of 

In our study below on the semiclassical and quantum-mechanical
counterparts of these properties, we shall evaluate wavenumbers 
associated with scattering resonances. The scattering resonance 
means a state in which an incident electron is transiently trapped 
within the quasi-closed region surrounded by disks. The imaginary 
part of is related to the inverse life time of the electron. (Note: In 
case of closed systems, all the eigenstates are absolutely stable and 

 have no imaginary component.) We shall elucidate the interesting 
distribution of corresponding to the classical outcomes, e.g., the 
presence of the lower limit of and its dependence. The following 
description is based on the work by Gaspard et al. (1994).
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Fig. 5.2. dependence of Lyapunov exponent λp. =1 (this value are used also
in Figs. 5.3 and 5.4): "0" orbit (solid line), "2" orbit (dotted line), "01" orbit
(broken line), "12" orbit (dotted broken line). 

5.2. Exact Quantum Theory 

In the scattering problem, the S matrix is a fundamental quantity 
giving the electric conductance and scattering cross section. The values 
of will be derived from poles of S matrices. Before entering into 
the semiclassical theory we shall describe the method and results 
within the framework of the exact quantum theory. 

Let us suppose that the four disks {d1, d2, d3, d4} are of unit radius 
and are surrounded by a large circle of radius R which is

arbitrary. Denoting the inter-disk distance by R, we assume 
(Note: In this chapter, Rc will denote to the Larmor radius (see Sec. 
5.5).) The ratio represents the degree of opening: and 

correspond respectively to a weakly-open scatterer with a bulky
repeller and to a strongly-open scatterer with a filamentary repeller. 
When the symbolic dynamics controlling the trapped orbits of 
the repeller does not demand special pruning rules. We shall focus on 
the case 2.5 when the corresponding classical dynamics is fully 
and strongly chaotic. 
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The S
matrix is introduced in the asymptotic expansion of the wave function 
in the angular momentum representation as 

Consider an incident particle with energy 

with its normal derivatives expressed as 

(5.5)

At the boundaries of (d1 , • • • ,d4), the wave function satisfies

(5.6a)

(5.6b)

where j = 1, • • • ,4.
The unknown quantities {Sll’} and {Alj m} can be obtained by 

substituting (5.5), (5.6) and the expression for a free-particle Green 
function G(r,r') = -( i/4)H0

(1) r-r' ) into Green's theorem, which
transforms the volume integral into a surface integral: 

(5.7)

where ds' is the line element along the boundary and primes in 
(5.7) mean the value at Choosing r on the boundary of disks we 
have, from (5.7), AM = C. Similarly, when r is taken very distant from 
disks, S= I - iAD is derived. Eliminating A between these two
equations, the S matrix is obtained as 

(5.8)

where C, M and D are biinfinite matrices whose elements contain
Bessel functions. This matrix equation is decomposed by using the 
irreducible representation of the C4v point group. Noting that A l1m=
A l2m= A l3m= A l4m, with A Alj-m for the A 1 -representation, the
components of M ( A 1  )  are given as follows:
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(5.9)

where Hm(z)=Hm
(1) (z) is the first Hankel function and m,m' >0.

chapter, the resonance of the S matrix are determined by 
Confining ourselves to the A1 representation throughout the present 

(5.10)

in the complex plane of the wave number  We shall examine the
ranges with and for the ratios and 

respectively. The size of the matrix M(A1) amounts to a dimension
of 50x50, for us to obtain well-converged values of its (scaled) 
determinant for any fixed value. The computed results are given in 
Figs. 5.3 and 5.4 for the case of and 12, respectively. These 
figures will be used for comparison with the semiclassical results in 
the next section. 

5.3. Semiclassical Theory 

Let us define a relative density of states ρ (E) as the difference between
the state densities of free and scattering systems, both confined in the 
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Fig. 5.3. Exact quantum ( ) and semiclassical( x ) resonances in case of 
Semiclassical results using: (a) 6 orbits with periods 1 an 2, (b) 14 orbits with 
periods 1,2, and 3. 

Fig. 5.4. Same as in Fig. 5.3 but =12. The semiclassical result consists of 
orbits with periods 1, 2, and 3. 
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very large circle . The function ρ (E) is asymptotically independent
of the radius of and is related to the S matrix as (Balian and Bloch,
1974)

(5.11)

Therefore, the density ρ (E) and the S-matrix share the same poles. The
function p (E) itself is written as ρ (E) = -1Im g(E) , with g(E) being
the trace of the difference between the Green functions with and 
without the four disks. 

In the semiclassical limit, g(E) is expressed as a sum over periodic 
orbits, i.e., by Gutzwiller's trace formula: 

(5.12)

where g0 is E-independent and given by the difference between
Thomas-Fermi state densities with and without four disks: 

Here p and r denote any unstable and isolated prime periodic orbit 
and the number of its repetition, respectively. With signifying the 
length of the periodic orbit, Sp(E) = = and Tp(E) =

dSp(E)/dE = are the reduced action and the period, respectively.
(For convenience, we rescale the velocity to a unit value v=1.) Lp is
the number of collisions of the orbit p with disks. The stability 
exponent µ p is derived from the stability eigenvalue via 
(The Lyapunov exponent λp, is given by , is the larger
eigenvalue of the monodromy matrix Mp constructed from the 
linearized Poincare' map for coordinates perpendicular to the 
trajectory. The advantage of the present system lies in the E
independency of due to the constancy of the particle velocity (v=l),
which greatly simplifies the summation in (5.12). Equations (5.11) 
and (5.12) indicate that the scattering resonances can be obtained 
from poles of g(E). 

With a help of symbolic codings, we can get all the periodic orbits 



88 Chapter 5 

Table 1. Periodic orbits up to period 3. The 3rd column represents a sequence 
of disk numbers in the order of bouncings. 
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without missing any one of them, pictures of 14 periodic orbits up to 
the period 3 in the number of bounces being listed in Table 1. As 
pointed out in Chap. 2, the trace formula in (5.12) is not convergent as 
it stands, i.e., conditionally convergent. Using the expansion 

one can write the trace function in terms of the Ruelle zeta function 
as

with

(5.13a)

(5.13b)

where =exp(µ p). The form of product sum in (5.13) guarantees the 
better convergence. Finally, the complex poles of the Ruelle zeta 
function yield resonances of the S matrix.

Noting the C4v symmetry of the system, the function can be 
factorized as , with each factor corresponding to the 
irreducible representations A 1, A 2, B1, B 2 and E. This symmetry-induced
factorization further simplifies the procedure of taking the product 
over periodic orbits in (5.13b). We have, for instance (Cvitanovic and 
Eckhardt, 1989, 1993), 

where tp is given by 

(5.14a)

(5.14b)

so long as we restrict ourselves to the resonances with the longest 
lifetimes, which are given by the first Ruelle zeta function with j=0.

How can we compute and necessary to evaluate tp in (5.14) ? 
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The answer is as follows: Let be coordinates on the Poincare' 
surface of section for the periodic orbit p and then derive the Poincare'
map for the flow in the phase space. By linearizing this map, we obtain 
the map for variations of the orbit p:

The eigenvalue of the monodromy matrix M is nothing but the stability 
eigenvalue which are 

(5.15)

[Note that up below (5.12) is and the Lyapunov exponent is 

The explicit form of M is available from a simple geometrical 
inspection as 

(5.16)

where and are the length of the flight between disks and 
the reflection angle, respectively, and are found from the profile of 
periodic orbits in Table 1. The quantity (=1 for all n) is the 
curvature of the disks where a particle bounces. 

For illustration, let us choose the n=l orbit "0." Then,
=1 and leading to and 

  with the degree of opening . As a little more complicated 
example, we consider the n=3 orbit "022" (see Fig. 5.5). By application
of Pythagoras' theorem and the sine formula to right-angled triangles, 
OPP' and OPP", respectively, one gets 
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Fig. 5.5. Flight distances and incident angles of period-3 orbit "022" in Table 1. 

By solving these equations simultaneously, values of y and x=cos
are determined, and other variables are given by cos( )=1, 
cos( )=cos( )=x, l12 =l31 =y- I23 =R- x and I31 =y- . Substituting 
these results into (5.15) and (5.16), we obtain both and 

For other periodic orbits in Table 1, similar 
calculations as above are possible. Finally, with use of the values 

and , tp in (5.14) is determined for any periodic orbit p. It
should be noted that the Bunimovich-Sinai curvature formula (1980) 
can also be used to obtain the Lyapunov exponents. 

We are concerned with the A1 representation which proves to 
include the scattering resonance with the longest lifetime bordering a 
“gap” void of resonances formed just below the real axis. The 
resonances for the A1 sector are given by complex values satisfying 

(5.17)
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In a quantum-mechanical treatment, the computation of scattering 
resonances demands an excessively long cpu time and a large region 
size for storage of memories. By contrast, the computation of (5.14) 
and (5.17) is not laborious, and one may promptly get a large number 
of resonances by which one is able to analyze their statistical properties. 
For the present system, therefore, the semiclassical theory is superior 
to the exact quantum theory. 

5.4. Distribution of Complex Resonances 

The location of poles, i.e., of complex resonances are given in Figs. 5.3 
and 5.4 in the cases =6 and 12, respectively. While the resonances 
{ } lie on the real axis in closed systems, they have nonvanishing 
imaginary components in open scattering systems. The semiclassical 
resonances based on 6 orbits with periods 1 and 2 and those based on 
14 orbits with periods 1, 2, and 3 are displayed in Figs. 5.3(a) and 
5.3(b), respectively. 

From Fig. 5.3(b), we learn the following: 
(i) In a wide window of 0<Re <20 and -0.4<Im <0 , a remarkable 

agreement is obtained between locations of the semiclassical and exact 
quantum-mechanical resonances. While the semiclassical resonances 
have also been obtained by using orbits up to period 4, no noticeable 
improvement has been found. Therefore the semiclassical theory with 
orbits up to the period 3 is extremely effective in reproducing the 
quantum resonances. (There remains, however, the difference for the 
resonance close to =0. Since the de Broglie wavelength for this special 
resonance is larger than the system's characteristic lengths, and R,
and invalidates the semiclassical theory, the difference is inevitable.) 

(ii) The distribution of resonances has a gap below the real axis. 
The semiclassical gap law shows that the resonances obey Im <-xgap

at large wave numbers Re >>1, with xgap =0.03796 in the case =6. 
The afore-mentioned resonance close to =0 is however ruled out 
because it is strongly affected by a diffraction effect. For repellers with 

6 but consisting of more than four disks, the gap will be diminished 
owing to the increase in the effective trapping region (more 
quantitatively, to the increase of Hausdorff and information dimensions 
of the corresponding classical fractal repellers). The nonvanishing 
gap is a quantum-mechanical manifestation of the presence of the finite 
upper limit of the trapping time for a classical particle (see (5.1)). On 
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the other hand, the quantum-mechanical asymptotic theorem (Lax and 
Phillips, 1967) states that, for repellers with more than two disks and 

>>1, the region satisfying 

(5.18)

with >0 is void of scattering resonances. The present issue is 
consistent with this theorem. 

(iii) The distribution consists of periodic structures parallel to the 
real axis. The periods can be attributed to combinations of two length 
scales ~R and ~2½ R characterizing the square geometry. 

Let us proceed with the case of a strongly-opened scatterer with 
=12, whose resonance spectrum is shown in Fig. 5.4. While the

semiclassical resonances are displayed in the window 0<Re <10 and 
-0.4<Im <0, their comparison with the exact quantum counterparts 
has been done in the limited range Re <5 because of the too large size 
of M(A1) required to get converged values of det M (A1) in the quantal
treatment. Nevertheless the results in (i)-(iii) are also valid here. 

A careful insight into the periodic structures in Figs. 5.3(b) and 5.4 
reveals that they are composed of several oscillating strings which lie 
parallel to the real axis and merge into narrow bands in higher 
energies. To characterize these structures, we shall now analyze dh/dx ,
i.e., the distribution function of the imaginary parts (x=-Im of the 
semiclassical resonances near the gap. Here h(x) is the cumulative 
distribution function per unit y=Re (Jessen and Tornehave, 1945):

(5.19)

where f(x+iy)= (-i (5.19) is derived by noting that the number N
of zeros of f(x+iy) within a loop C on the complex plane is given (see
Fig. 5.6) by 
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Fig. 5.6. Closed loop C in the complex plane. 

We choose the case =12 where the beating of oscillating strings is 
more evident (see Fig. 5.4). The density distribution dh/dx per unit
Re is depicted in Fig. 5.7 for increasing sampling range (y2-y1) used
in the average (5.19), with (=8) fixed. The density distribution 
consists of a sequence of stable bands with fine structures near the 
threshold fluctuating as increases. The formation of bands is 
caused by bunching of several oscillating strings parallel to the real
axis. The location of a threshold (at xgap=0.0509) in the distribution
is extremely stable against increasing the sampling range, ensuring 
the resonance gap in the semi-infinite range Re >8 We should note 
that, for the separable two-disk billiards (Miller, 1975), we have 
(instead of a band structure) only a single discrete spectrum because of 
the regular arrangement of resonances parallel to the real axis at 
large values of Re dh/dx= (x-xgap ), with On the 
other hand, the random-matrix theory suggests a distribution with 
the density dh /dx xv/2-1 exp(-x/2) for v (>2) open channel systems.
This density is the derivative of the generalized Porter-Thomas
cumulative distribution function (Porter and Thomas, 1956; Porter, 
1965, showing a monotonic growth, starting from Im =0 (i.e., with 
no gap) for v >2. Because the density of the four-disk scatterer in 
Fig. 5.7 shows a behavior which is more complex than in these two 
special limits, the result of Fig. 5.7 suggests a new universality 
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Fig. 5.7. Distribution function of imaginary part of semiclassical resonances 
dh/dx with x=-IM . y1=8: (a) y2=20, (b) y2=30, (c) y2=40, )d) y2=50..

class of the distribution of x=-Im
For C4v four-disk systems, we showed that the exact quantum 

resonances can be nicely reproduced by the semiclassical theory, 
using the cycle expansion of the Ruelle zeta function with a finite set of 
periodic orbits, up to period 3 in the number of bounces. Small 
differences remaining between the quantum and the semiclassical 
resonances may be attributed to higher-order corrections to be 
incorporated in the periodic-orbit quantization. Near the resonance 
gap, the statistical distribution per unit Re of the imaginary parts of 
the semiclassical resonances turns out to consist of a sequence of bands 
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with small peaks near the threshold. Any finite truncation of the 
inverse zeta function should lead to a stable asymptotic distribution 
h(x) when Re However, it seems that the asymptotic distribution 
is reached only at high values of Re On the other hand, there is 
presently no rigourous result (other than the inequality in (5.18)) on 
the existence of this distribution h(x) for the quantum-mechanical
system. Besides this question, our results show that the distribution 
h(x) considerably differs from the prediction of random matrix 
theories. This difference holds irrespective of the degree of opening of 
the scatterer and strongly indicates a nonuniversality of the distribution 
function near the threshold. 

The present theory may also be a vehicle for studies on more 
complicated open systems like the crossroad, where the effect of 
diffraction should be incorporated. Indeed, the classical repeller of the 
crossroad billiard differs from that of the four-disk billiard at the level 
of the periodic orbit "12" of Table 1 (see Fig. 5.1). The periodic orbit 
"12" is bouncing just at the matching points between the straight lead 
wires and the circular corners. The contribution of such periodic orbits 
bouncing at discontinuites of the border of the billiard needs to be 
modified due to special diffraction effects (Alonso and Gaspard, 1994). 
Such modifications may lead to quantitative differences in the 
distribution of the resonances between the crossroad and the 
four-disk billiards, but our study indicates that both billiards should 
share the same qualitative properties. 

The resonances studied in this chapter can provide information 
on the dynamical behavior of a semiconductor mesoscopic device like 
the crossroad. The reaction time of the device may be estimated from 
the size of the aforementioned gap in the distribution of resonances. 
Indeed, according to Schrödinger's equation applied to scattering 
systems, the time evolution of an electronic wavepacket is given by a 
linear superposition of damped exponentials, exp(ImEnt/ ), controlled 
by imaginary parts of the complex energies of the resonances. In the 
present system, we have shown that imaginary parts of the 
wavenumbers are bounded by the value of the gap according to Im < 
-xgap . Using the relation between energy and wavenumber, we infer 
that the probability for the electron to remain in the scatterer decays 
like exp(-t/ The upper bound on the lifetimes is given by =
1/(2uFxgap ) in terms of the semiclassical gap and the Fermi velocity of 
the electron gas. Since the gap is related to the Lyapunov exponents of 
the periodic orbits, our analysis shows how the reaction time of the 
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device depends on the geometry of the system: 

97

(5.20)

which is valid in the regime >>1 where diffraction effects can 
be neglected. In the case of crossroad, we see that the shortest reaction 
times are obtained for the smallest values of the corner radius a, 
assuming a fixed value for the width (=R-2 of the lead wires. For
GaAs/AlGaAs heterojunctions, the effective mass of the electrons is 
m=0.067m e , and an electron density of ns=3 x 1011cm-2 can be obtained
so that the Fermi velocity would then take the value 
m=2.4 x x105m/s. For a nanometric circuit of size R=100nm, the time
unit is therefore of R/uF=0.4x 10-12s so that the lifetimes of the
resonances are in the subpicosecond domain. We suggest that the 
dynamical behavior of such devices could be probed by femto-second
laser experiments. 

To conclude, the semiclassical theory on chaotic scattering on 
convex hard disk systems has the following advantages: (1) The 
systematic enumeration of all the periodic orbits is possible owing to 
the symbolic dynamics. (2) So long as one is concerned with the case of 
the large degree of opening (i.e., of filamentary disks), only short 
periodic orbits contribute substantially to the trace formula, eliminating 
the problem of its divergence due to exponential proliferations. (3) 
Since poles of g(E) and S(E) are identical, their imaginary components
are significant, while they are not demanded in bounded systems. 

As a consequence, the semiclassical theory of chaotic scattering 
has not only a conceptual significance to uncover the quantum-classical
correspondence, but also an advantage to be more practical than the 
exact quantum theory which, in applications, meets computational 
limitations in both cpu time and memory area. 

5.5. Experiment on Antidot Arrays in Magnetic Field 

While effects of magnetic field have not been taken into consideration 
in the theoretical treatment above, recent experiments have accumulated 
around the quantum transport in regular arrays of hard disk billiards 
in the presence of magnetic field. Weiss et al. (1991, 1993), using 
high-mobility GaAs/AlGaAs heterojunctions having carrier density 
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n8~2 x x1011 a" and mobility µ -1.0 x 106 cm2 /Vs, fabricated a periodic
square antidot array (: periodically-drilled holes through a two-
dimensional electron gas) with the period R=200~300 nm (which
should not be confused with Rc below) and with radius   of each
antidot (electron depletion region) less than R/2. Applying a magnetic
field B perpendicularly, they explored transport anomalies in a 
temperature region where both the electron mean free path le and the 
phase coherence length are of the order of 10 µm. Note the classical 
cyclotron radius at the Fermi energy. The measurement of 
resistivity pxx for a sample with R~0.5 at T~0.4K as a function of B
shows distinct quantum oscillations in the low B regime (2R c>R-
which differ from the Shubnikov-de Haas oscillations periodic in 1/B 
in the high B regime (see Fig. 5.8). The latter is caused by the 
Landau level structures. Since le, Iφ >>R and the Fermi wavelength

~ 50nm, the quantization of chaotic motion of electrons plays a role. 
The quantity ρxx in Fig. 5.8 displays quantum oscillations superimposed
upon the low-B  resistance anomalies. These oscillations are periodic 
in B with period B~ 0.105 T [Tesla]~h/eR2

 . The crossover from B-
periodic to 1/B-periodic oscillations, together with the fact that the
antidot array is much larger than the phase-breaking length in a 
2DEG, suggest that the B-periodic oscillations are not due to the
Aharonov-Bohm interference of phase-shifted wave functions. 

Assuming ρxx~g2(E, B), Weiss et al. tried to explain the
experimental issue by resorting to Gutzwiller's trace formula. This 
system, though simulating the so-called Sinai billiard, is a generic and 
mixed system since electrons are subject to the magnetic field. 
Furthermore, not a hard but rather soft wall model is employed in 
their study. As a consequence both stable and unstable periodic 
orbits contribute to g(E, B). The relevant periodic orbits are displayed 
in Fig. 5.8(b). Due to finite temperatures and impurity broadening 
effects, only the shortest periodic orbits are taken into consideration. 
The periodic orbits cause a modulation of g(E, B ) with maxima given 
by the quantization rule 

(5.21)

where N=(n+y/2+ /4) in terms of the quantum number n, the winding 
number , and the Maslov index α. B B) is the flux penetrating the
area B) enclosed by a periodic orbit. For comparison with experiment, 
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Fig. 5.8. (a) ρxx measured in the patterned (top traces) and unpatterned (bottom 
trace) segments of the same sample for T=0.4K (solid lines) and 4.7K (dashed 
line). Inset: ρxx up to 10 T with filling factor v =2 marked by arrow.
(b) Triangles mark 1/B positions of pxx minima. Solid, dashed, and dotted lines 

are calculated reduced actions (1 /B) of orbits (a), (b), and (c), respectively.
These orbits are shown for 1 /B=0.6T-1 (top) and 1 /B= 2.7 T-1 (bottom inset).
(Courtesy of D. Weiss et al. )

the reduced action 

is more advantageous: S(B)=2n with n=1,2,• • • labels minima of
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g(E,B). Three periodic orbits in Fig. 5.8(b) are sufficient to explain the 
minima of pxx . These are: (a) an orbit between four antidots, (b) another 
one around a single antidot, (c) the last one emerging from a bifurcation 
of orbit (b). All other periodic orbits are asserted to play only minor 
roles. The calculated (B) traces in Fig. 5.86) highlight the dominant 
role of the orbits (a)-(c).

Despite an elegant interpretation of some of the fluctuations in 
quantum transport, there remains an open question concerning the 
underlying low-B field anomaly, which should be interpreted on the
basis of isolated unstable periodic orbits. Specifically, it is possible to 
have to give alternative insight into the fluctuation in the vicinity of 
zero field when the system is fully chaotic and no stable periodic orbit 
survives. It is therefore highly desirable to extend the theory given in 
the present chapter to the system with more than four disks and also 
in the presence of magnetic field. 
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Chapter 6 

Nonadiabaticity-Induced
Quantum Chaos 

To accommodate temporal chaos in quantum dynamics, we consider 
the dynamics beyond the Born-Oppenheimer approximation. After 
reviewing the fictitious gauge strucure in the adiabatic limit, we 
examine the role of gauge structure in nonadiabatic transitions for 
transport in open paths. Local features of the gauge potential modify 
the nature of the intersection of the adiabatic energy surfaces and 
thereby affect crucially the Landau-Zener formula for a single-passage
transition rate. We then investigate the full dynamics of systems 
involving both slow (nuclear) and first (electronic) dynamical variables 
and demonstrate the chaotic behaviors in quantum dynamics. 

6.1. Avoided Level Crossings and Gauge Structure 

As we have so far insisted, the collapse of tori and onset of chaos are 
disturbing the foundation of the formalism of quantum mechanics in 
the adiabatic limit, i.e., when no quantum transition occurs. In this 
limit the present formalism of quantum mechanics demonstrates many 
puzzling features: avoided level crossing and gauge structure, commonly 
appearing at the level degeneracy, are the most interesting events, 
which we shall explain below. 

The adiabatic limit correponds to stationary states, in which the 
major problem of quantum mechanics is to solve the eigenvalue 
equations

102
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(6.1)

where in general the Hamiltonian H(q) depends on parameters R=(R 1 ,
R 2, • • •, Rd) such as external electric and magnetic fields. Within a
desymmetrized manifold, no degeneracy can be seen except for the 
accidental ones (von Neumann and Wigner, 1929): If a single parameter 
were varied, we would see only level repulsions, e.g., avoided level 
crossings. We shall illustrate this point by using a two-states model. 
Suppose that at some point R0 two states and are degenerate 
with common energy E0. The eigenvalue problem in the vicinity of R0

can be solved by degenerate perturbation theory. Using as diabatic 
(R-independent) bases and I the matrix elements of H(R)
are given as 

(6.2)

and

with H'ij(R) = The energy splitting at R is

(6.3)

To meet the degeneracy (or to make E =0), both equalities 

(6.4a)

(6.4b)

should be satisfied. The number s of independent equations in (6.4a) 
and (6.4b) is 2, 3, and 5, respectively, for real symmetric, complex 
Hermitian and quaternionic Hamiltonians. Hence, if d<s, no solution 
for R exists satisfying (6.4), and one cannot see any degeneracy except 
for accidental ones. For d=s we can have a set of isolated degenerate 
points. Finally, for d>s the degeneracy is not isolated, lying on a 
g(=d-s) -dimensional manifold, e.g., lines for g =1, surfaces for g =2, etc.
This situation has been extensively studied by Arnold (1978) in the 
context of the theory on a surface of the second order (quadric): The 
condition for degeneracy to occur is identical to that for a given 
ellipsoid to become the ellipsoid of revolution. 

In fully chaotic systems, we have no integral of motion other than 
the total energy. The corresponding quantum systems are therefore 
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desymmetrized at the outset. When a single quantity is vaned among 
d( 2) nonintegrability parameters, we shall see only avoided level 
crossings. In the semiclassical limit the level density is very high, and 
these avoided crossings constitute the backbone of complicated energy 
spectra. Below we shall examine in detail a structure of the vicinity 
of the avoided crossing in case of d 2.

The eigenvalue problem (6.1) is closely related to quantum 
dynamics in the adiabatic limit that R changes very slowly as a 
function of time t. Let us find the corresponding adiabatic change of 
the electronic wavefunction I lying initially at by 
investigating the time-dependent Schrödinger equation 

(6.5)

In the adiabatic limit, one may regard R as frozen at each moment 
in time. By exploiting (6.1), the solution of (6.5) is given by 

(6.6)

where the phase that the wavefunction acquires in its adiabatic 
change, is defined by 

(6.7)

In the case d 2, is a path-dependent geometric phase that 
cannot be vanishing in general (Berry, 1984), while in the case d=1 it
can always be smeared out by suitably after choosing the phase of 

This is a manifestation of the fact that eigenstates are multi-
valued in the parameter space R in d( 2) dimensions, though they 
are single-valued in configuration space. 

Let us consider a closed circuit C in R space (see Fig. 6.1) and 
introduce the fictitious gauge potential 

(6.8)
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For an adiabatic transport of the wavefunction along C, the geometric 
phase is now expressed as 

.9)
where dS denotes an area element of the surface enclosed by C, and
Vn (R) is a fictitious magnetic field defined by

0)
[The vector products in (6.9) and (6.10) follow Berry's paper (1984). 
They should be rewritten in general in terms of exterior differentials.] 
The form (6.10) indicates that Vn(R) is singular at degenerate points. 
For the case d( 2), the parametric change of an energy eigenvalue 

Fig. 6.1. Conical intersection of a pair of energy surfaces and closed path C.
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constitutes not a line but a surface. The crossing point of a pair of 
adjacent energy surfaces is topologically singular and generating the 
fictitious gauge potential. 

As a concrete example, let us take a model of a spin in the 
magnetic field (R=(X, Y, Z )) described by an SU(2) complex Hermitian
Hamiltonian

(6.11)

where I and denote the unit matrix and Pauli matrices, 
respectively. In this example, d=s=3. A pair of energy surfaces
(eigenvalues) are represented by 

(6.12a)

and they are conically intersected at the diabolical point R=0 (see Fig.
6.1). In terms of polar coordinates defined by R=(sin cos sin   sin
cos ), the corresponding eigenstates are given by 

(6.12b)

where Substituting (6.12) into (6.10), we 
have

(6.13)

This is equivalent to a magnetic field induced by a monopole at R=0
with charge ± 1/2. Using (6.13) in (6.9), the geometric phase is given 
by (C) = where is the solid angle for the view of circuit C
as seen from the degeneracy. When C encloses (with any plane circle 
including R=0) the degeneracy, = ± 2 otherwise, =0. In the former
case, exp (C)} =-1, which changes the sign of the eigenstates. 

The phase (6.9) is a manifestation of a holonomy (i.e., failure of 
some variables to return to their original values after a cyclic change 
of other variables) for the parallel transport of quantum eigenstates 
(unit vectors) in parameter space (see Fig. 6.2). In the field of quantum 
chemistry, vibration-rotation energies of molecules are analyzed in 
the Born-Oppenheimer approximation, wherein electronic quantum 
states are assumed to follow the change of nuclear coordinates 
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Fig. 6.2. Parallel transport of state vector along spherical surface. Path: 1 2 
3 4. 

adiabatically. Longuet-Higgins et al. (1958) noticed the geometric-
phase-induced sign change in the electronic wavefunctions when 
nuclear coordinates are cycled. In the field of differential geometry, 
Darboux (1896) had found a similar sign change in his analysis of 
"umbilic points" of curved surfaces. Nevertheless, the universal gauge 
structure around level degeneracies was not revealed until Berry's 
work.

6.2. Nonadiabatic Transitions and Gauge Structure 

The discovery of quantum adiabatic phase accompanying transport 
along closed paths has indeed had a great impact on various fields of 
physics and chemistry (Shapere and Wilczek, 1989). This global phase, 
originally discussed in connection with the intersection of molecular 
energy surfaces, is attributed to connections in a Hilbert bundle, i.e., to 
a fictitious gauge potential. This gauge structure is a consequence of 
the novel complex nature of the wavefunction in the time-dependent
Schrödinger equation. 

A generalization of the influence of the quantum adiabatic phase to 
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the nonadiabatic transitions is nontrivial, because we capture the 
local (rather than global) structure of the novel gauge potential via the 
transition rate. While several studies are concerned with this theme, 
most of the efforts have been concerned with corrections to the global 
geometric phase factor for closed or near-closed paths (Aharonov and 
Anandan, 1987; Moor, 1991; Wu and Kuppermann, 1993). 

Nonadiabatic transitions, however, occur widely for both open and 
closed paths and they provide a key to understanding a variety of 
state-changing phenomena, e.g., two-level dynamics in the presence of 
magnetic and/or electric fields, atomic and molecular collisions, Zener 
tunneling, etc. (Dykhne, 1962; Mott and Massey, 1965; Pechukas, 
1969; Miller and George, 1972; Child, 1974; Hwang and Pechukas, 
1977; Nikitin and Umanskii, 1984). This kind of transition is induced 
at the avoided crossings of the potential surfaces. 

In this section, we consider nonadiabatic transitions between a 
pair of states as a mechanism for nonadiabatic transport along open 
paths. In particular, following Nakamura and Rice (1994), we show 
the influence of the fictitious gauge potential on the transition rate. 
Although we use, as a prototype, the dynamics of a single spin in the 
presence of a time-dependent magnetic field, the present analysis is 
applicable to other systems, e.g., two-level systems subjected to time-
dependent laser fields. 

In the magnetic field B(t) = (Bx(t), By(t), Bll(t)), the spin dynamics
is described by the Schrödinger equation, with 

(6.14)

where the negative of the Bohr magneton µ B has been suppressed for 
simplicity. With the choice Bll =vt, Bx= and By=0, we obtain the 
Landau-Zener (or curve-crossing) model. Here both Bx and By are
assumed nonvanishing and time-dependent: B(t) executes a winding 
(besides a translational) motion. We shall evaluate the transition 
amplitude from one adiabatic state at t =- to another at t =+ . 

First we briefly summarize the existing formula (Berry, 1990) for 
the transition rate in the presence of winding motion. With the use of 
adiabatic bases (t) and (t), (t) is written as (t) = C1(t) (t) +
C2(t) (t) and the Schrödinger equation is reduced to 
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with

(6.15)

(6.16)

where overdots denote time derivative, the {Ei } are the eigenvalues of 
H in (6.14) at particular times (adiabatic energies), and the {Ai} are
(mutually different) fictitious gauge potentials. In our notation, i =1
and 2 are associated with the lower and higher energy states, 
respectively. This gauge structure leads to a novel geometric phase for 
adiabatic transport along closed paths. As for nonadiabatic transport, 
use of the path-integral method and the stationary phase approximation 
leads to the following transition rate for a single passage of the avoided 
crossing: p=exp(-2 with

(6.17)

where E = E2-E1, A = A2-A1, and tc is the complex crossing point at 
which E vanishes (Berry, 1990). According to the rigorous treatment 
given below, however, the gauge potentials enter into the phase 
integral in a much more intricate way, and (6.17) is valid only in a 
very special limit. 

We now examine the quantum dynamics for the Hamiltonian 
(6.14) using a diabatic (time-independent) basis. Transforming to 
polar coordinates defined by and 
introducing the unitary transformation 

we introduce a new wavefunction defined by Then satisfies 

(6.18)
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The transformed Hamiltonian given by (6.18) is now analytic 
throughout some strip of the complex-time plane centered on the real 
axis, and it satisfies I for (i.e., absence of 
mixing between diabatic states). In this situation we can apply the 
phase-integral method (Stückelberg, 1932; Crothers, 1971), obtaining 
for the full transition rate 

with the single-passage rate p = exp(-2 (We are not interested in 
the phase-interference factor, sin2(• • •), proper to the passage of 
successive avoided crossings.) is now given by 

where

(6.19)

(6.20)

i.e., the difference between adiabatic energies of in (6.18). Note that 
is the complex crossing point nearest to real axis. 
Equations (6.19) and (6.20) are exact. In the near-adiabatic region 

of the winding Landau-Zener model, is constant and 
predominant, whereas and Bll are slow and small variables in the 
transition region near the avoided crossing. In this extreme case, (6.20) 
is expanded in one of the slowest variables as 

and
1 a) 

(6.21b)

The corresponding expansion of will follow in the integration (6.19). 
While the results in (6.19) - (6.21) are derived using the diabatic 

basis, we now rewrite them in terms of the adiabatic basis: Definition 
(6.16) yields A =A2 - A1 = and with E
= Using these expressions in (6.20), we have 

(6.22)
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With the same replacement in (6.21), the asymptotic behavior is given 

by

(6.23a)

(6.238)

with approximated by the values at which E and
vanish in (6.23a) and (6.23b), respectively. Therefore (6.17) is justified 
in the special limit when the winding motion is much slower than the 
translational motion. In the opposite limit, the sum of gauge potentials 
is needed and, in the general case, we should use (6.22). 

We shall now apply the results in (6.19), (6.22), and (6.23) to a 
winding Landau-Zener (curve crossing) model where Bll = vt, Bx =
and By = with = wtn/n (n=1,2,• • • ) . For simplicity, v, and
w are assumed positive. Below we shall use E = + (vt)2]½ ,
irrespective of the value of n.

Case of n=1. In this case, the Galilean transformation (t t'=t-
w/v) smears out the phase factor, so that there is no gauge structure 

and the ordinary Landau-Zener transition rate pLZ = is 
applicable

Case of n=2. Using in (6.23) A = and A = wt, we
find, from (6.19), 

(6.24a)

(6.24b)

With the same expression for gauge potentials in (6.22), (6.19) with 
yields = which recovers the two 

limits in (6.24). While Berry carefully analyzed the n=2 case, he was 
mainly concerned with (6.23a) and (6.24a), showing neither (6.22) nor 
(6.23b).

Case of n=3. In this case, A = wvt3 / E and A = wt2 . The
formula in (6.17) or (6.23a) here yields no correction to the Landau-
Zener's result, since the integration of A does not have any 
imaginary component. On the other hand, from (6.23b) we have =0.61 x 

In terms of a scaled time the most general result 
available from (6.22) is 
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with ε and = . Noting the asymptotic expansions
~ + , for >>1, and 
~ 0.61-0.42 for ε <<1, we get

and

(6.25a)

(6.25b)

for 4 and respectively. 
The asymptotic behaviors in (6.25) are in excellent agreement with 

an envelope of the full transition rate in Fig. 6.3 obtained by 
our numerical iteration of the time-dependent Schrödinger equation 
(6.14) for n=3. (Spiking oscillations in P are attributed to the
multiplicative phase-interference factor in the equation above (6.19).) 

Fig. 6.3. Full transition rate P for the winding Landau-Zener model with =1 
and =1. Filled circles denote values obtained by numerical iteration of (6.14): 
(a) with v=0.4, (b) with v=0. Envelope lines in (a) and (b)
represent - with p in (6.25a) and (6.25b), respectively. The 
arrow in Fig. 6.3(a) corresponds to the limit p=pLZ.
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We here assert: (i) Even when the winding motion is slower than the 
translational motion, the existing formula (6.17) fails in providing a 
leading-order correction to pLZ. (ii) In the opposite case, the formula
in (6.23b), consisting only of a sum of gauge potentials, can give 
accurate leading-order values for the transition rate. (iii) In general, 
(6.22) indicates the transition rate depends on the difference and sum 
of a pair of gauge potentials in intricate ways, according to the 
adiabaticity ratio of the winding and translational motions. 

The present formula in (6.22) and (6.23), with a slight modification, 
can also be used in other winding models in the near-adiabatic region. 
Consider, for instance, a winding Demkov (exponential) model 
(Demkov, 1964) with Bll = = and = 
sin exp(-vt) in the case Interchanging Bll and B the
formulas from (6.21) through (6.23) still hold; this interchange 
comes from the predominance of Bll in this model. Noting the gauge 
potentials

and

with

we have, from (6.23) and (6.22), 

and

(6.26a)

(6.26b)

(6.27)

respectively, where pDemk = [Due to a finite mixing of 
diabatic states in the limit the exact expression for a single 
passage transition rate in the winding Demkov model is p=(1+ )-1,
which, however, reduces to a standard form p=e in a near-adiabatic
regime.] The winding Demkov model, after a unitary transformation 
(6.18), turns out the exactly solvable Nikitin's model (1970), whose 
known solution justifies (6.26) and (6.27) in the near-adiabatic
region.

In conclusion, when the applied magnetic and/or electric fields show 
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time dependence in both amplitude and polarization vector, the local 
aspect of the gauge potentials greatly affects the intersection of 
adiabatic energy surfaces. The formula for nonadiabatic transition 
rate includes a pair of gauge potentials in intricate ways, depending 
on the ratio of the adiabaticities of the winding and translational 
motions of applied fields. 

Experimental Evidence 

The interference in transitions due to local geometric phases has been 
observed by Bouwmeester et al. (1996). They chose an optical system 
in which the polarization dynamics of the light can be described by a 
Schrödinger-like equation. Two optical levels are formed by two 
orthogonal polarization eigenstates of a single longitudinal mode of a 
ring cavity. The two adiabatic eigenstates are determined by three 
birefringent elements in the form of electro-optic modulators (EOMs) 
placed inside the optical cavity. The birefringences form X, Y, and Z
coordinates of the parameter space and are controlled by time-dependent
electric voltages applied to EOMs. The cavity decay time (~µs) is long 
enough to complete the whole process of measurement. The dynamics 

Fig. 6.4. Three pairs of branching points that dominate the transition phenomena 
for Gaussian twisted Landau-Zener model. =0.44MHz/µs, =0.33MHz, =1 µs 
and µ=5.4 rad. These parameter values are also used in Fig. 6.5. (Courtesy of
D. Bouwmeester et al. )
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of the intracavity field is measured by analyzing the polarization of 
light that leaks out through the cavity mirrors. 

Bouwmeester et al. have examined the case of Gaussian twisted 
Landau-Zener (LZ) model by taking in (6.18) and 
the phase function The transition probability, 
being dominated by three pairs of branch points (see Fig. 6.4), is 
expected to show interference phenomena between successive avoided 
crossings. The approximately analytical expression for the transition 
probability P as a function of the adiabatic parameter 
can be obtained by using the methodology described so far. The most 
essential issue is the presence of a local minimum in P for the twisted 
LZ model, which is a clear indication of interference between the
branch points. 

Figure 6.5 shows the time trace of the normalized intensity of + 

Time (µs)

Fig. 6.5. Experimental results: curve 1 shows the time trace of for the 
conventional Landau-Zener model with =0.44MHz/µs, =0. 33MHz; curve 2 
shows the time trace for Gaussian twisted Landau-Zener model. Dotted curves 
are the corresponding traces obtained by numerical simulations. Vertical dotted 
lines indicate the time positions corresponding to real parts of branching points 
in Fig. 6.4. (Courtesy of D. Bouwmeester et al.) 
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polarization Curve 1 is the experimental result of the 
ordinary LZ model in the near-adiabatic region. The oscillation after 
the avoided crossing at t=0 is caused by the strong mixing between +
and - polarizations (i.e., a pair of adiabatic eigenstates) in the crossing 
region. Curve 2 is for the Gaussian twisted LZ model, indicating the 
influence of the three pairs of branch points in Fig. 6.4. In fact the 
intensity shows radical changes at t=0 and t=± 0.93 µs which
are just the real parts of the branch points in Fig. 6.4. The dotted 
curve is a numerically computed one which is in good agreement with 
the experimental issue. 

Figure 6.6 shows the final transition probability P between the 
adiabatic energy levels as a function of the adiabatic parameter Λ. A
good agreement between the experimental data and numerical and 
approximate-analytical results. The key point is the presence of the 

Fig. 6.6. Square points are experimental values for final transition amplitude P
as a function of adiabatic parameter During the parameter change, =0.49MHz 
/µs, =0.72µs and µ=3.0rad are kept fixed. Dashed curve is the corresponding
numerical result. Circles connected by dotted curve are the corresponding 
analytical results obtained by taking into account three pairs of branching 
points in Fig. 6.4. (Courtesy of D. Bouwmeester et al. )
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minimum caused by the interference phenomena. In this way we can 
really observe local aspects of the gauge structure around the avoided 
level crossings. 

6.3. Forces Induced by Born-Oppenheimer Approximation 

We have demonstrated that many diabolos and avoided level crossings 
appear in energy spectra of the classically-chaotic systems and that 
they induce the fictitious gauge potential in the adiabatic limit 
when external parameters are taken as frozen at each time. What 
phenomena are expected if the external parameters are slowly-varying
variables like nuclear coordinates, rather than electric or magnetic 
fields?

In studying the complex dynamics in microscopic cosmos, one 
encounters situations where a light (electronic) system with fast 
variables is coupled to a heavy (nuclear) system with slow variables. 
Since the dynamics of the whole system is quite complicated and hard 
to analyze, we separate fast from slow variables noting the difference 
in time scale of dynamical variables. Below we shall treat fast and slow 
degrees of freedom in terms of quantum and classical variables, 
respectively. An adiabatic approximation is first to solve the motion of 
fast variables for frozen values of slow variables and then to elucidate 
the slow dynamics under the averaged environment of the first motion. 
This approximation is called as the Born-Oppenheimer approximation 
(see also Messiah (1959)). The averaged energy of the fast system 
depends on the values of the slow variables so that its gradient w.r.t. 
slow variables provides a reaction force on the slow motion. We shall 
hereafter illustrate this point and then scrutinize the dynamics beyond 
the Born-Oppenheimer approximation to see chaos in quantum systems. 

Suppose that Hamiltonian for molecules with slow (nuclear) P, R 
and fast (electronic) p, r variables is 

(6.28)

and apply the Born-Oppenheimer approximation to the complete 
eigenvalue problem For frozen R, the electronic system 
satisfies the eigenvalue problem 
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with (R) and for the adiabatic eigenvalue and eigenstate of 
the fast (electronic) Hamiltonian, respectively . 

If one chooses an eigenfunction of the whole system (6.28) in a 
factorized form 

(R) proves to satisfy 

unless is degenerate. In (6.30a) 

and

(6.29)

(6.30a)

(6.30b)

(6.30c)

are the fictitious gauge potential and effective potential, respectively. 
A(R) is essential in the vicinity of level crossings or conical 
intersections. Veff (R) consists of the adiabatic eigenvalue (R) and
corrections due to the slow motion. From (6.30), we observe that the 
slow variables are subject to three reaction forces (Jackiw, 1988; Berry 
and Robbins, 1993): (i) Born-Oppenheimer (ii) fictitious 

magnetic (B= x A), (iii) fictitious electric ( in terms of 
the electrostatic potential 

The Lagrangian corresponding to the Born-Oppenheimer
Hamiltonian in (6.30) is straightforward: L = MR 2 /2 + R • A -
Veff (R). (R implies time-derivative.) The kinetic energy in (6.30a) 
resembles that of a charged particle in the presence of a magnetic field. 
Consequently, upon quantization, the slow variables should satisfy the 
anomalous commutation relation (Jackiw , 1988; Kuratsuji and Iida, 
1988)

(6.31)

where {Bk } denote the components of B. In the anomaly phenomena 
in modern quantum field theory, some symmetries of classical physics 
may disappear in corresponding quantum systems because of a 
symmetry-violating procedure exploited in quantum-mechanical



Nonadiabaticity-Induced Quantum Chaos 119

treatment. The relation (6.31) provides a typical example of this 
phenomenon.

From a viewpoint of nonlinear dynamics the system described by 
(6.30) has a possibility of exhibiting chaos if the number of degrees 
of freedom is larger than that of the constants of motion. Will slow 
(and consequently fast) degrees of freedom be able to demonstrate chaos 
with the help of reaction forces in (6.30)? Our special interest lies in 
the genesis of chaos in the quantum (electronic) system with the 
nuclear system left classical. Below we shall pursue this theme. 

6.4. Nonadiabaticity-Induced Chaos

We shall show a significant consequence of the above discovery, by 
examining a concrete example exhibiting an isolated avoided crossing, 
i.e., a system of the Jahn-Teller type (Bulgac and Kusnezov, 1995). 
Denoting a two-level electronic system by suppose the Hamiltonian 
for a prototype of molecules with (nuclear) slow and classical P,Q and
(electronic) fast and quantum variables as given by 

(6.32)

where on the r.h.s. the 2nd and 3rd terms designate the potential for 
slow variables and the interaction between slow and fast variables, 
respectively; is a coupling parameter and f(Q) is a form factor. In 
terms of the density operator p, let the expectation value of be 

written as = r = (x, y, z). Then p can be expressed by

(6.33)

While p2=p in a pure state, the unequality p2<p is satisfied in general 
for mixed states. 

The equation of motion for the system (6.32) can be derived from 
the Lagrangian 

(6.34)

The first two terms represent canonical terms for slow and first 
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variables. Euler-Lagrange equation for (6.34) yields 

(6.35a)

(6.35b)

(6.35c)

Equation (6.35c) is identical with the Schrö dinger equation idp/dt
= [H, p]. The set of Eqs.(6.35) has the following constants of motion:

(6.36a)

(6.36b)

(6.36c)

The conservation of r reflects the normalization condition for the 
electronic wavefunction r=1 and r<1 for pure and mixed states,
respectively.

Before numerical iteration of (6.35) with (6.36), we shall see the 
results of the adiabatic approximation. In this approximation, one 
assumes the quantum system to remain in either one of the
instantaneous eigenstates ((6.37b) below) of the Hamiltonian (6.32) 
with P=0 and Q fixed, which renders Q• r =± Q with r =l. The resulting
Lagrangian for slow variables is then obtained, by using r = ± Q/Q in
(6.34), as 

with
(6.37a)

(6.37b)

Equation (6.37b) represents a pair of adiabatic potential surfaces 
with a Mexican-hat shape for the lower one (see Fig. 6.7). 

The adiabatic equation of motion is derived from (6.37) as 
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Fig. 6.7. Adiabatic potential for Jahn-Teller system. 

(6.38a)

(6.38b)

On the r.h.s. of (6.38b), the first and second terms represent, respectively, 
the Born-Oppenheimer force and the induced magnetic force arising 
from the Dirac monople (i.e,, conical intersection of energy surfaces) at 
the origin Q=0. Other induced forces are suppressed here coming from 
corrections higher order w.r.t. the adiabaticity parameter. While the 
induced magnetic force has a highly nonlinear feature, the total 
number of constants of motion (i.e., E and J in (6.36) with r = ± Q/Q)
is 4, rendering the effective phase space dimensionality for P and Q to
2(=6-4). Since the minimum dimension necessary to see chaos is 3, 
orbits predicted by (6.38) execute only regular motions along the 
absolute minimum of the Mexican-hat potential (6.37b), indicating no 
signature of chaos. Despite the highly nonlinear nature of the reaction 
forces, therefore, the adabatic or Born-Oppenheimer approximation 
suppress a symptom of chaos. 
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Bulgac and Kusnezov (1995), however, pointed out that the 
dynamics beyond the adiabatic approximation can lead to a genesis 
of chaos in quantum systems, which will be described below. We 
shall treat separately the closed system with the slow degree of freedom 
confined to a finite area and the open scattering system. 

Chaos in a Bounded System 

To solve the equation of motion in (6.35) beyond the adiabatic 
approximation, we should specify the model by taking a harmonic 
potential V(Q) = Mw 2Q2/2 and a unit form factor f(Q) = 1. After 
additional scaling (M = w = 1), (6.35) becomes 

(6.39a)

(6.39b)

(6.39c)

The nonlinearity is obvious on the r.h.s. of (6.39c) describing the 
torque on r. The system in (6.39) has 9 dynamical variables and 5 
integrals of motion in (6.36). Therefore the effective phase space 
dimensionality is 9-5=4. For strong enough coupling and in most of 
the energy ranges other than the vicinity of the bottom of 
Mexican-hat potential (V_(Q) = (Q - /2)2 /2 - /8), the trajectories of 
the slow variables are chaotic. The electronic variable, namely, the 
density matrix shows a fully ergodic behavior (see Fig. 6.8) at the 
same time. This outbreak of chaos in the quantum (electronic) system 
is not a mere reflection of chaos in the slow degree of freedom but 
attributed to the nonlinear interaction involved in (6.39c). 

Chaos in an Open System 

While the above result is interesting enough, the problem is limited 
to the bounded system with a harmonic potential. One can also 
discuss an anomalous nonadiabatic transition by choosing the potential 
with a finite-height barrier which allows scattering phenomena. 
Consider, for instance, an incident atom A to be scattered by a target 
atom B fixed at the origin. The electronic (quantum) system of the 
atom B and the (classical) nucleus of the atom A correspond to fast 
and slow degrees of freedom, respectively. In (6.32), we choose 
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Fig. 6.8. Poincare' section for the density matrix p; and z are defined by 
r=((r2-z2)1/2 cos (r2-z2)1/2 sin z); =5. (Courtesy of A. Bulgac and D. Kusnezov.)

(6.40a)

(6.40b)

This model yields a conical intersection near the origin and, far from 
the origin, a pair of nondegenerate levels. In fact, using (6.40) in 
(6.32), one obtains the two adiabatic potential energy surfaces 

(6.41)

which are reduced to ± /2 in the limit Q and crosses mutually at 

Let us now launch a particle towards the center from downward 
(Qz<O) with tunable impact parameter b (>0). We choose Q(t=0) = (b,
0, -100) and P(t=0) = (0, 0, P0 ) with P0>0 as an initial condition. By
solving (6.35) with (6.36) exactly beyond the adiabatic approximation, 
the interaction between quantum (electronic) and classical (nuclear) 
degrees of freedom will ensure the occurrence of chaotic motion. 

Q=0.
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Figure 6.9 demonstrates the b dependence of the time during which 
the nucleus stays in the interaction region. The complicated spectrum 
reflects the sensitivity to b, a feature proper to chaotic scattering. 
Figure 6.10 displays the z component of the final momentum Pz(t=
as a function of the initial electronic state of r(t=0)= (rcos rsin
0). Its fractal feature is obvious. The P0 dependence of the transition 
probability Pr= is also pointed out to exhibit a fractal aspect, 
in contrast to a monotonous feature in the case of Landau-Zener
transition described in the previous section. 

In this way, so long as systems with a few degrees of freedom are
concerned, we may conclude: In the adiabatic limit when the time 
scales between slow and fast degrees of freedom are extremely different, 
the reaction (e.g., virtual magnetic and electric fields) is indeed exerted 
on the slow degree of freedom, but quantum dynamics cannot exhibit 
chaos. In the dynamics beyond the adiabatic approximation, however, 
we can see a genesis of chaos in the quantum (electronic) system or
the genuine quantum chaos in both bounded and open systems. 

From a viewpoint of nonlinear (classical) dynamics, most of 
molecular kinetics in the microscopic cosmos have the possibility to 

Fig. 6.9. The b dependence of the time during which the atom A stays in the 
interaction region. V0=-2.5, Q0=2, and =5. The lower limit for (~200) is the 
passing time in the absence of interaction. (Courtesy of A. Bulgac and D. 
Kusnezov. )
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Fig. 6.10. Final momentum of the scattered atom PZ(t= ) as a function of the
initial electronic state b=1 and other parameter values are the same as in
Fig. 6.9. (Courtesy of A. Bulgac and D. Kusnezov. )

generate chaos. However, if each molecular system were quantized at 
the outset, this possibility would be smeared out. It is difficult to see 
chaos in quantum systems without artificial approximations. This 
means the present formalism of quantum dynamics should be 
innovated so as to accommodate temporal chaos. 
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Chapter 7 

Level Dynamics and 
Statistical Mechanics 

Statistical aspects of classically-chaotic quantum systems are described 
by random matrix theory and its constrained variants. These apparent 
irregularity can be explained more profoundly by statistical mechanics 
of the completely-integrable Calogero-Moser and Calogero-Sutherland
systems derived from quantum-mechanical eigenvalue problems by 
regarding a nonintegrability parameter as a pseudo-time. The idea is 
traced back to Dyson's level dynamics, but the modern framework 
described in this chapter is based on conservative Newtonian dynamics 
rather than on an overdamped limit of Langevin equation. 

7.1. Level Dynamics: from Brownian Motion to Generalized 
Calogero-Moser-Sutherland (gCM/gCS) System

In classical mechanics, the transition from regular behaviours to chaos 
occurs when the strength of nonintegrable perturbations is varied. 
In the corresponding quantum mechanics, we manage the eigenvalue 
problem for a -dependent Hamiltonian, provided the system is 
autonomous. Consequently we envisage multiple avoided crossings or 
repulsions of energy levels, which constitute a fundamental 
mechanism for complicated spectra with a definite symmetry in 
(classically-chaotic) quantum bound systems. Indeed, adiabatic-ansatz
eigenvalue problems in (7.3) (see below) yield a new paradigm of 
nonlinear dynamics which bridges the gap between greatly different 

127
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theories of solitons and random matrices. The transition from Poisson 
to Wigner level-spacing distributions can be interpreted in terminology 
of nonlinear dynamics. 

Taking energy levels as particle coordinates, Dyson started a level-
dynamics approach to describe statistics of irregular energy spectra. 
He was the first to conceive the idea of deriving the joint probability 
density of eigenvalues from a level dynamics standpoint. Dyson (1962) 
remarked: "After considerable and fruitless efforts to develop a 
Newtonian theory of ensembles, we discovered that the correct procedure 
is quite different • • •. The xj (eigenvalues) should be interpreted as 
positions of particles in Brownian motion. This means that the 
particles do not have well-defined velocities, nor do they possess inertia."
So long as he confined his argument to random matrices, his remark 
was right. His theory of Brownian motion in the form of stochastic 
differential equations will be sketched below. 

For a Gaussian orthogonal ensemble, the stochastic differential 
equation for a -dependent ( is "quasi-time") real symmetric matrix 
H( ) is given by 

(7.1)

which implies that the differential dH( ), like a differential velocity,
is provided by a sum of the frictional (-Hd ) and random (dV ))
forces. In (7.1), V ( ) is also a member of the Gaussian orthogonal
ensemble and dV ( ) denotes a fundamental Brownian step obeying
Wiener processes: 

(7.2a)

(7.2b)

with <• • •> denoting ensemble average. The essential point is that dV
is of the order (d )1/2 . We shall now derive the corresponding 
stochastic differential equations for eigenvalues and eigenvectors 
by investigating the eigenvalue problem 

(7.3)

Let us replace in (7.3) by + d and use expansions w.r.t. (d )½ :
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(7.4a)

(7.4b)

(7.4c)

(7.5a)

(7.5b)

with

Then, standard perturbation theory yields equalities for each order 
of (d ½ with l =1,2,• • •. The differentials of order of (d ½ proves
to be derived only by the random forces. The relevant equalities appear 
in order of d and are given by 

and

with dW defined by

(7.6a)

(7.6b)

(7.7a)

(7.7b)

We find that the equation for eigenvalues, (7.6a), which is decoupled 
from eigenstates, describes the one-dimensional Brownian motion of 
particles of unit charge and unit mass subject to both on-site harmonic 
potential and a repulsive two-dimensional (logarithmic) Coulomb 

diffusion rate. 
Equation (7.6a), with (7.7), is identical with the Smoluchowski or 

Fokker-Planck equation for the time-dependent probability density 

potential; plays the role of friction coefficient which fixes the 
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(7.8)

where is a systematic force derived from the effective 
potential

(7.9)

The stationary solution of (7.8) yields the joint probability 
density for a Gaussian orthogonal ensemble: 

(7.10)

which, as will be explained later, belongs to the same universality class 
as the Legendre orthogonal ensembles encountered in quantum chaos. 
Similar arguments apply to Gaussian unitary and symplectic ensembles. 
This completes Dyson's whole story. 

Dyson's Brownian motion model corresponds to the overdamped 
limit of Langevin's equation given by 

(7.11)

with and Here represents 
Gaussian white noise. 

there is no coupling between particle positions and 
internal degree of freedom (i.e., eigenstates). Although the Brownian 
motion model is successful in describing level correlations of irregular 
spectra, it originates in random matrices, failing to capture the 
parameter-dependent characteristics of the spectra. It is therefore 
highly desirable to invent a formalism of level dynamics and statistical 
mechanics starting from deterministic Hamiltonians. 

We describe below a modern version of this analysis, by managing 
a conservative Newtonian system rather than the overdamped limit of 
a Langevin equation. Systems exhibiting chaos are classified into 
either one of autonomous or driven nonautonomous systems, 
corresponding to whether the nonintegrable perturbation V with
strength added to the integrable unperturbed system H0 is time-
independent (for the autonomous case) or not (for the nonautonomous 
case). (The perturbations are, for instance, a nonlinear particle-

Evidently
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particle interaction, coupling of a particle with electric or magnetic 
field, and so on.) As far as these systems are bounded, the standard 
quantum-mechanical method to describe them is as follows: 

(1) Autonomous systems are described by means of the time-
dependent Schrödinger equation with the time-
independent Hamiltonian

(7.12)

where both H0 and V are Hermitian (H0+=H0, V+=V). Taking a product 
form the problem is reduced to the eigenvalue 
problem or, in Dirac's notation, to (7.3). 

(2) A prototype of driven nonautonomous systems is the 
periodically-pulsed system, e.g., a kicked rotator, which has received a 
considerable interest in the area of quantum chaos. The Hamiltonian 
for this system is given by 

(7.13)

The problem of solving the time-dependent Schrödinger equation 
is reduced as well to the eigenvalue problem 

(7.14)

for a one-period unitary operator defined in terms of time-
ordering operator as 

with V = and U0 = In fact, the quasi-energies
and quasi-eigenfunctions in (7.14) determine the 

wavefunction just after the jth pulse as I =

Here we shall pose a question: If is taken as "quasi-time"
with both eigenvectors and eigenvalues (or quasi-eigenvalues) {xn}
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viewed as classical dynamical variables, what universal dynamical 
system would be deduced from the eigenvalue problems in (7.3) and 
(7.14) ? The answer to this query was provided by Pechukas (1983), 
Yukawa (1985), and Nakamura and Lakshmanan (1986). In the 
following we shall follow the work of Nakamura and Lakshmanan 
(1986).

Let us first consider the autonomous systems. Equation (7.3) yields 

(7.15)

Below we shall be concerned with a manifold with a set of fixed 
quantum numbers and assume no degeneracy of the eigenvalues. 
Differentiating (7.15) w.r.t. the pseudo-time we have 

After slightly rewriting its l.h.s., (7.16) becomes 

Equation (7.17) implies 

(7.16)

(7.17)

(7.18a)

(7.18b)

for m n. Noting that {<m } constitutes a complete set and also that 
=0 does hold, due to the arbitrariness of wavefunction's 

phase factor, (7.18b) turns out to be identical to the equation 

for m=n, and

(7.18b')

Equations (7.18) are just an extension of Hellmann and Feynman's 
theorem (Feynman, 1939). 

If one were to substitute in (7.18) the concrete expression (7.12) 
for H and the expansions xn=xn

(0) + xn
(1) + • • •, + 
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• • • , and then write down equalities in each power of , well-known
formulas for the nondegenerate perturbation theory would become 
available.

In the following treatment, however, we shall not resort to 
expansions of {xn} and but exploit dH/d V (i.e., (7.12)) with the
aim of rewriting (7.18) in a form of the canonical equations of motion. 
For this purpose, let {Vnm} be replaced by new variables: We shall 
introduce "momenta" pn=Vnm for m=n and auxiliary variables 

(7.19)

for m ≠ n. Noting the latter to be re-expressed as

proves to be -independent and Hermitian . Let be the 
lowest eigenvalue of then the non-negative Hermitian operator 

is found to be described, in terms of a suitable -independent
operator L, as

Replacing Vnm finally by 

(7.20)

(7.21)

in case of m n, (7.18) is reduced to (Nakamura and Lakshmanan, 
1986; Nakamura, 1993) 

(7.22a)

(7.22b)

(7.22c)

(7.22d)



134 Chapter 7 

Fig. 7.1. Generalized Calogero-Moser system. 

Amazingly, (7.22) proves to constitute a set of canonical equations 
to describe (1+1)- dimensional classical many-body system, i.e., a 
linear chain of particles exhibiting positions {xn}, momenta {pn} and
internal degrees of freedom In fact, let us introduce 
the generalized Calogero-Moser system consisting of N "classical"
particles with each possessing the internal complex-vector space in N
dimensions (see Fig. 7.1), which is described by the Hamiltonian 

(7.23)

with defined as a scalar product of complex vectors 
and By the application of Poisson brackets, 

one obtains a set of canonical equations from (7.23) : 

(7.24)

(7.25a)

(7.25b)
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which are shown to reproduce (7.18) exactly. 
In this way we have seen that the eigenvalue problem for 

autonomous systems in (7.12) is equivalent to solving the initial value 
problem for the gCM system. The repulsive interaction in the gCM 
system stems from avoided crossings proper to the quantum chaos. 
[Even in case of integrable perturbations where no avoided crossings 
would emerge, it would also be possible to map the eigenvalue 
problem to gCM system so long as one concentrates on the manifold 
with fixed quantum numbers. Singularity of the repulsive interaction 
will be suppressed in the integrable case, however, by weakening the 
coupling coefficients 

The method developed so far applies as well to driven 
nonautonomous systems. Here the eigenvalue problem (7.14) is 
reduced to the generalized Calogero-Sutherland system (Nakamura 
and Mikeska, 1987) which is derived from (7.23) with a replacement 

(7.26)

but with the same Poisson bracket as in (7.24). 
Introducing the quaternions (i.e., 

in terms of 2 x 2 Pauli matrices), one may generalize (7.12) to a 

symplectic Hamiltonian: H =H0 + The resultant dynamical 

system is again given by (7.23) except for the replacement in the 
inter-"particle" interaction

(7.27)

with for m n. 
The most important characteristics of gCM (gCS) system is its 

complete integrability, meaning that one can rewrite (7.22) in the Lax 
formalism and have the constants of motion with their number equal 
to the degrees of freedom. In fact a single soliton solution has been 
obtained (Gaspard et al., 1989), which corresponds to an avoided 
crossing moving when is varied. One may conceive that a high 
density soliton gas, representing a high density avoided crossings, 
should serve in describing irregular spectra. Without having recource 
to an analytical method like the inverse scattering method, let us now 
demonstrate this picture vividly on the basis of a numerical calculation 
of a simple Hamiltonian. 
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7.2. Soliton Turbulence: A New Interpretation of Irregular 
Spectra

Most treatments of level dynamics have been directed towards 
confirming the random-matrix formalism of energy spectra. Generic 
features of quantum spectra for classically chaotic systems, however, 
are much more fruitful than the results of random-matrix theory. Even 
a coherent structure can coexist with the irregular spectra for a 
Gaussian orthogonal ensemble (GOE). The existence of solitonic 
structures (i.e., mobile avoided crossings) has been found in the
experiment on diamagnetic Rydberg atoms (Iu et al., 1989) and in 
numerical data (e.g., on a pulsed spin system). These solitons are 
attributed to regular orbits such as stable KAM tori (in generic systems) 
or (unstable) periodic orbits (in K systems, i.e., systems with positive 
Kolmogorov entropy) in the underlying classical dynamics. 

The most astonishing aspect of the gCM system is its complete 
integrability. This fact implies that, for any kind of initial conditions, 
we should inevitably see a gas of solitons in large regimes; and, 
conversely, a gas of solitons at =0 will yield complicated level 
structures in some of the large (>0) regions because of many 
collisions among solitons. Solitons would thereby be a precursor of 
spectra for the Gaussian orthogonal ensemble (GOE). 

By solving numerically the generalized Calogero-Moser equation 
corresponding to the model quantum Hamiltonian, we suggest a new 
interpretation of quantum irregular energy spectra from the viewpoint 
of nonlinear dynamics (Ishio and Nakamura, 1992). The soliton-
turbulence picture is shown to be effective in describing the Gaussian 
orthogonal ensemble-like spectra. The transition from Poisson to Wigner 
level-spacing distributions can be interpreted in the terminology of 
nonlinear dynamics such as soliton density and fluctuation of 
accelerations.

To formulate our idea, we choose a model Hamiltonian involving 
the core of generic classically chaotic quantum systems. We introduce 
a set of three manifolds (diagonal block matrices) , 2, and 3. In 
the absence of the interaction between the manifolds, each of them 
may be characterized by different quantum numbers such as principal 
quantum numbers. For convenience, is here assumes horizontal 
while and are solitonic: Levels in are independent; levels in 
, which at = 0 lie with an energy gap above those in , show 
downward motions with increasing so as to cross the Similarly, 
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levels in , lying with the gap below those in at = 0, show 
upward motions. In the presence of coupling between these manifolds, 
however, the quantum numbers become meaningless and mixing 
among manifolds is crucial, as is often encountered in generic 
quantum systems. Finally the effective Hamiltonian is given by 

with

(7.28a)

(7.28b)

(7.28c)

where and denote solitonic (crossing) and horizontal 
-indenpendent) levels, respectively. The quantities w and u are

soliton-soliton and soliton-horizontal couplings, respectively. The model 
(7.28) is just a generalized Demkov-Osherov Hamiltonian, originally 
used for the problem of multidimensional Landau-Zener transitions 
and belongs to the category of our concern in (7.12); from (7.28) we 
have H0=H( =0), V = (H( )H(0)) We choose three sets and

such that the spacing distribution in each set satisfies the Poisson 
distribution. For values {p ± i}, we consider two different cases: (i) the 
Maxwell-Boltzmann distribution P(p) dp exp(-p2 /2 T)dp ; (ii) the
regular sequences given by p± i = ± y (i-1)± with i = 1,2,• • , where +
and - are used for and manifolds, respectively. In case (ii) any 
stochasticity is thoroughly expelled. 

We choose u=0.2, w=0.4, and =100 and prepare 600 horizontal
levels for the manifold with 1150 solitonic levels for each of the 
and manifolds. Furthermore, T = 1000 [case (i)] and =0.02 and 
= 9.0 [case (ii)] are taken for convenience. By diagonalizing the matrix 
in (7.28a) at = 0, we obtain a complete set of initial values for {xn} ,
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and their canonical-conjugate variables. With these initial values 
we proceed to solving the gCM equation for >0. Figure 7.2 shows, in 
case (i), the -dependent energy spectrum in some of the originally 
horizontal-level energy regions. We see: (1) In the small region [see 
Fig. 7.2(a)], several solitons become invading the manifold. A 

Fig. 7.2. The dependence of energy spectra in case (i): (a) 1.8< <3.4, (b) 
13.6< <15.2. 
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regular feature of the spectrum is almost retained in this region. This 
orderly structure is quite similar to the one in the experiment by Iu et 
al., though it is not straightforward to reduce the Hamiltonian for the 
diamagnetic Rydberg atoms to the form in (7.28). (2) In some of the 
large region [see Fig. 7.2(b)], solitonic and horizontal levels can hardly 
be perceived. In this region the invasion by many solitons of the 
horizontal-level region is essential and the resultant increase in the 
number of collisions between solitons and between solitons and 
horizontal levels yields the irregular spectrum. It is worth noting that 
such irregularity comes from the completely integrable system. 

Taking all levels included in the energy region E , where the levels 
in the manifold are located at =0, we calculate the level-spacing
distribution P(s) and the spectral rigidity at some fixed values. 
The results are shown in Figs. 7.3(b) and 7.3(c) in cases (i) and (ii), 
respectively. Figure 7.3(a) is the near-Poisson distribution at = 0, 
which is here regarded as reflecting the classical integrability. (Since 
precise energy levels at = 0 are obtained by the diagonalization of 
(7.28), a slight deviation from the Poisson distribution is inevitable.) 
Both Figs. 7.3(b) and 7.3(c) show the Wigner distribution. We find it to 
be widely observed for with 5.0 and 80.0. In the other 

region, we see the intermediate distribution. On the other hand, for 
any value of shows persistent L/15 behaviors with increasing
L, which is characteristic of the Poisson distribution. Our additional 
data for much larger L values up to 200 (not shown here) indicate 
neither ln(L) - 0.007 behavior for GOE nor the saturation of 

Noting that large L behavior of represents the long-range level 
correlation, one may assert the following: As for the short-range
correlation, the present model describes the transition from the 
Poisson to GOE statistics, but it does not for the long-range correlation. 
This is due to the short rangeness of the couplings (in the sense of the 
second-order perturbation theory) between horizontal and solitonic
levels and between solitonic levels, which locally affect the level 
structures. In general, the large L behavior of is known to be 
nonuniversal, depending on the individual nature of the Hamiltonian. 
So, our concern will be limited only to the short-range correlations. 

In the same energy range as considered in Fig. 7.3, we show in Fig. 
7.4 the concentration of solitons (i.e., solitonic levels) n [= (N -
N(0))/N ] and fluctuation of accelerations ) [ as a
function of Here d2x/d and N denotes the number of levels
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Fig. 7.3. Level-spacing distribution and corresponding spectral rigidity (inset). 
denotes Dashed and dotted lines correspond to GOE and Poisson limits, 
respectively: (a) =0, (b) =15.0 [case(i)], (c) =15.0 [case (ii)]. 

involved in the energy range E. Figures 7.4(a) and 7.4(b) correspond 
to cases (i) and (ii), respectively. The quantities n and grow 
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linearly with and decay with an accompanying long-time tail. The 
maximum occurs at nearly equal values and for n and
respectively. We can identify the GOE region, as a region 
where takes values above the threshold. On close inspection, 
however, we see and Both inequalities are caused 
by the difference in the number of solitonic collisions between ranges 
below and above In fact, most of the solitonic levels with large 
gradients invading the horizontal levels in the smaller region 
and collide often with those incident from the opposite direction as well 
as with horizontal levels, thereby leading to the GOE spectrum even 

Fig. 7.4. The dependence of n (solid line) and (dotted line): (a) case (i), 
(b) case(ii). Distribution of accelerations at =0 (thin histogram) and =15 (thick 
histogram): (c) case (i), (d) case (ii). 
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for relatively small n values. To further explore a dynamical aspect of 
the ensemble of levels, we also show in Figs. 7.4 (c) and 7.4 (d) the 
distribution function of a in the small-α region. In both cases (i) and
(ii), the very narrow distribution at = 0 well spreads at = 15 and 
again narrows in the region of very large . 

While limited data are presented, almost identical results are 
available for various magnitudes of w , u, and for both distributions 
(i) and (ii). Therefore the present findings strongly suggest the 
universality of the interpretation of irregular spectra in terms of 
nonlinear dynamics. 

In conclusion, on the basis of a model Hamiltonian, a soliton-
turbulence picture is shown to be effective in describing the energy 
spectra for classically nonintegrable and chaotic systems. Like vortices 
in fluid turbulence, the condensation of solitons leads to the enhanced 
fluctuation of accelerations of energy levels and to the Wigner level 
spacing distribution. In fact there is a recent experimental report that 
the absorption spectra for diamagnetic Rydberg atoms have a wide 
window of soltonic structures in the classically chaotic regime, 
betraying the prediction of the random matrix theory. The present 
soliton-gas picture will provide a new interpretation not only of the 
irregular spectra but also of the coexisting orderly structures in real 
experiments . 

7.3. Statistical Mechanics of gCM System 

Since the Hamiltonian operator in (7.12) works in infinite-dimensional
Hilbert space, we inevitably have an infinite number of energy levels. 
This fact leads us to consider the statistical properties of energy levels, 
in particular, distributions of level spacing and curvature (see Fig. 
7.5). Despite the complete integrability of the finite gCM system, 
statistical information is available from any finite interval in the 
infinite gCM system where dynamical mixing becomes possible. As for 
an infinite ideal gas or harmonic solid, it may have ergodic, mixing or 
Bernoulli properties, while its finite counterpart is completely 
integrable, showing no local dynamical instability (Sinai, 1976; Lanford 
and Lebowitz, 1975). We assume such results for an infinite gCM 
system.

To study the statistical mechanics of a gCM system, an invariant 
probability density is needed to define a canonical ensemble. To 
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Fig. 7.5. Level spacing S and curvature K, typically at avoided level crossing. 

simplify the construction, we assume that the energy spectrum {xi}
extends from - to + and is invariant under x translations with a 
uniform density ρ. In actual quantum systems, the level density is
usually non-uniform, but for the purpose of studying the spectral 
fluctuations, the uniform density is desirable. Prior to construction of
the canonical ensemble, let us introduce an intermediate canonical 
ensemble of systems with N particles (i.e., energies) in the interval 
[-L/2, +L/2]. At the end points of this interval we place hard walls

where the particles undergo elastic collisions. Between walls the 
particle motion is ruled by the classical gCM Hamiltonian (7.23) or by 
its extension 

(7.23')

with (see also (7.26) and (7.27)). The value of v
(=1,2 and 4) depends on the symmetry of quantum Hamiltonians under 
consideration. Equation (7.23') is used to define a Gibbs measure 

(7.29)
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The canonical ensemble will then be obtained in the limit where 
the size L of the box increases infinitely while keeping the density p
constant. The resulting measure depends on two parameters: density 
ρ and inverse "temperature" . The value of is determined from the
variance of the velocities of the energy levels: 

Unless the mean drift is nonvanishing, it should be 
subtracted from the motion of individual energy levels so as to
guarantee <pn>=O. To fulfill translational invariance of the canonical
measure, we have to verify that a uniform density of energy levels be 
deduced for the canonical ensemble in the thermodynamic limit L,N

with N/L kept constant. 

The integration of the measure (7.29) over variables pm and
yields the joint probability density of energy levels: 

(7.30)

for This is just the joint probability density 
encountered in random matrix theory except for the weight factor. 
Therefore, if the uniform level density is obtained, the measure (7.29) 
for the gCM system is expected to reproduce known results from 
random matrix theory. 

To be concrete, the normalizing constant in (7.30), level 
density, as well as the spacing distribution will all be calculated starting 
from the generating functional defined by (Gaspard et al., 1990; Rice et
al. 1992),

-L /2 < xi < L /2.

(7.31)

where {u(xk )} are arbitrary functions, and variables {xi } are scaled to 
give the size of the box L = 2. In case of random matrix theory, Mehta
and Gaudin (1960; 1961) reduced integrals like (7.31) to the Fredholm 
determinant of an integral kernel composed of mutually orthogonal 
functions. For the Gaussian ensemble, harmonic oscillator 
eigenfunctions (i.e., Hermite's polynomials) are used to calculate the 
joint probability density (7.30) multiplied by a Gaussian weight factor, 
exp For Jacobi or Laguerre ensembles, the corresponding 
orthogonal polynomials are used in reduction of (7.31) with a varied 
multiplicative factor. In this classification, (7.30) is the joint 



Level Dynamics 145

probability density of the Legendre ensemble, since the weight factor is 
unity so that Legendre polynomials working in the domain [-1,1] are 
needed to calculate (7.31). Within the Legendre ensembles, exponents 
v=l, 2, and 4 define orthogonal, unitary and symplectic ensembles,
respectively. The analysis of the statistical mechanics of the gCM 
system is thus reduced to that of the Legendre ensemble. 

Level Density and Level Spacing Distribution 

We shall hereafter concentrate on the case v=l for simplicity, while the
extension to cases v=2 and 4 is straightforward. Let the variables
{ xn} be placed in order as 

(7.32)

Then the product in (7.31) is equal to the Vandermonde 

determinant

of Legendre polynomials, Eq. (7.31) becomes 

(7.33)

multiplied by a facor (-1)N(N -1)/2. Using (7.33) and the property

(7.34)

(7.35)

with AN-1= . 
From the generating functional in (7.35), we can obtain all the 

necessary information on orthogonal systems with v =1: Firstly, the 
normalizing constant is given by 

(7.36)

where IN(1) is the integral (7.35) for u(x)=l. Accordingly, the partition
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function becomes, for N >>1, 

(7.37)

Secondly, the level density is available from the functional derivative, 

(7.38)

(See Dyson (1962).) Using a large-order expansion of Legendre 
polynomials and after rescaling x 2x/L, the level density near x=0 is
given by 

(7.39)

for N>>1. The density (7.39) reaches a uniform value in the 
thermodynamic limit N, L with N/L a constant. In this limit, 
therefore, the Gibbs measure in (7.29) has proved to be successful in 
constructing the canonical ensemble. It should be emphasized that the 
present scheme has an advantage superior to Wigner's semicircle law 
for a Gaussian ensemble given by , which shows 
an unpleasant extensive behavior (~N½ ) in the thermodynamic limit. 

Finally, in terms of the probability (S) that an interval of size S is
void of eigenvalues, the spacing distribution p(S) is defined by 

(7.40)

The function (S) itself is reached (Mehta, 1967) by a limiting behavior 
of the probability given by 

(7.41)

gets

(7.42)

where in terms of the S-dependent

spheroidal functions f0, f2 , f4,• • • . From (7.40) and (7.42), we find 
-1

with u(x)=0, for , and 1 for Using (7.35) in (7.41), one 
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which agrees with the universal level spacing distribution pOE(S)
obtained for the Gaussian and circular orthogonal ensembles (Mehta, 
1967). The well-known Wigner distribution, 
is merely an approximate distribution available from the "two-level
model." The issue (7.43a) can be generalized to the cases v =2 and 4: 
For v=2,

with quadratic level repulsion; for v=4

(7.43b)

(7.43c)

with quartic level repulsion. (7.43b) and (7.43c) are identical to pUE(S)
for a Gaussian unitary ensemble and pSE(S) for a Gaussian symplectic 
ensemble, respectively. 

The statistical mechanics of gCM systems has thus explained why 
level spacing distribution for classically-chaotic systems (or spectra of 
quantum chaos) should obey the same universal distributions as those 
of random matrix theory. 

Curvature Distribution 

Although the random matrix theory conveys only statistical 
information when a set of nonintegrability parameters are fixed, the 
statistical mechanics of gCM system can also predict distribution 
functions for parameter-dependent quantities. Among such quantities, 
the most important one is level curvature (Fig. 7.5) given by 

(7.44)

Curvature in (7.44) takes large values for a pair of adjacent levels at 
avoided crossings and constitutes a promising indicator of quantum 
chaos. In practice, numerical computation of curvatures Ki can be 
done by using the discrete form of the second-order derivative in (7.44) 
with a small but finite (In near-integrable regimes) anomalously 
large values for Ki may be available which would prevent us from
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constructing the curvature distribution. We shall therefore assume a 
fully-chaotic regime where the presence of universal curvature 
distribution can be expected.) 

In (7.44), is nothing but the acceleration of the i-th particle in
gCM systems, so that 

(7.45)

(see (7.23') ). Without loss of generality, we take x1 as a sample level 
and derive the probability density for curvature to take the value K:

with

(7.46)

(7.47)

where dMN,L is the Gibbs measure (7.29). From (7.23’), the equation K+
possesses N-1 roots {x1

(k)} for any value of K. These zeros
can be evaluated when K is large and positive, because is a 
function of x1 which diverges in the vicinity of levels different from x1

(see Fig. 7.6). Choosing K positive, we obtain 

Consequently, one gets 

with

(7.48)

(7.49)

(7.50)

Equation (7.49) is evaluated asymptotically for large positive 
values of K. After integration over the variables x1, {pn} and
we obtain 

(7.51)
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Fig. 7.6. Solutions of K+

where GN,L is given by the mean value over the joint probability 
density (7.30) as 

(7.52)

In the thermodynamic limit and far from the hard walls, this 
expression is related to spacing density at zero spacing. 

Evaluation of the mean value (7.52) for a uniform spectrum of 
density p is quite easy. Let x0 be any eigenvalue in a sequence of 
ordered eigenvalues. Distribution in 
(7.52) is replaced by the function, for and =1 for 

Then (7.52) becomes a series of terms, each containing a 
pair of mean values: 

(7.53)

The m-th term is given by
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(7.54)

where pv(m)(S) is the the m-th order term in the spacing distribution. 
For m =0, pv

(0) (S) is the nearest-neighbor spacing density given by 
(7.43a)-(7.43c) for v =1,2 and 4 respectively. Since pv

(m)(S) with
>v for m 1, (7.54) remains nonvanishing only for m =1 in the limit 

0. In this limit, therefore, (7.53) becomes 

(7.55)

where pv(S)=pv
(0)(S) and the constants Dv are /6, /3, and 24 /135,

for v=1,2, and 4, respectively (see(7.43)). A similar result is available
for K<0.

Finally, the tail of the curvature distribution is given for each 
ensemble by 

(7.56a)

(7.56b)

(7.56c)

for large We note that the powers of parameters and ρ are
consistent with the fact that K/ρ is the dimensionless curvature.
This fact also indicates that scaling of curvature is needed in the 
presence of a non-uniform spectrum. The curvature distributions (7.56) 
are normalizable, so that they have a probabilistic interpretation. 
Their mean value <K> is zero because densities are symmetric under 
the reflection K -K. The variance <(K-<K>)2> is infinite for the
orthogonal ensemble but finite for unitary and symplectic ensembles. 

The curvature distribution in the vicinity of K = 0 is system-specific.
However, Zakrzewski and Delande (1993) proposed a formula on a 
global feature of P(K) of GUE as 

(7.57)
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which was proved valid by Oppen (1994) and Andreev and Simons 
(1995) for a special one-parameter family of Hamiltonians. 

In this way, we can recognize why quantum spectra of classically-
chaotic systems obey the same universal level distributions as in the 
random matrix theory. Since the statistical mechanics of a gCM 
system leads to the curvature distribution as well as the major issue of 
the random matrix theory, it is more generic than the traditional 
framework of random matrix theory. 

7.4. Statistical Mechanics of gCS System in Intermediate 
Regime

While we have so far assumed the fully-chaotic systems underlying the 
quantum irregular spectra, most of the dynamical systems possess a 
mixed feature that KAM tori coexist with chaos. So it is desirable to 
find out intermediate statistical behaviors bridging between the 
Poissonian and Gaussian ensemble statistics. There is however no 
universal statistical behavior in the intermediate regions which is 
highly system-specific. Choosing the number variance which describes 
the long-range (rather than short-range) correlation of ensemble of 
levels, we shall show below one interesting channel introduced by Gaudin 
as early as 1966. The model certainly interpolates the Poisson and 
circular unitary (CUE) ensembles by a single tunable parameter z (0
z 1) and is described by the N-angle joint distribution

(7.58)

where stands for the eigenvalue of unitary matrix, 
Equation (7.58) reduces to 

and
(7.59a)

(7.59b)

in the limits z 1 and z 0, respectively; Equations (7.59a) and (7.59b)
represent the Poisson and CUE joint distribution functions, respectively. 
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The expression in (7.58) can be rewritten as 

(7.60)

with It should be noted
that Gaudin's distribution can be derived from the partition function of
the Calogero-Sutherland system (see (7.23), with the replacement 
(7.26)), i.e., a universal dynamical system behind periodically-pulsed
quantum systems that are classically mixed. In fact, assume a Gibbs 
measure for the system in (7.29): 

b = z/(z - 1)2 and C’N = CN(2/1 - N(N-1)z)) .

with the following constraint for the total "charge" :

(7.61)

(7.62)

In (7.61) λ denotes a Lagrange multiplier. Integrating (7.61) over
irrelevant variables {pj} and one recovers (7.60) with a prescription

The normalization constant in (7.60) is calculated as 

(7.63)

We shall now demonstrate how the joint distribution function in 
(7.58) will lead to a formula of the number variance interpolating 
between the Poisson and CUE limits. The number of levels contained 
in an energy interval of length s is a stochastic variable with its 
average <n(s)>=s, and the number variance is the fluctuation
<<n(s)-n>2>. represents a spectral rigidity and is related to the 
two-level cluster function as explained below. 

Using Gaudin's result for the two-level correlation function, 
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one obtains the two-level cluster function 

(7.64)

(7.65)

where stands for "real part of' and is the unfolded level given by 
= Let us introduce the level separation r= (<<N) and
parametrize z as

Then, in the limit N (7.65) reduces to 

(7.66)

The number variance is related to the two-level cluster function 
Y2 (r) through

(7.67)

Using (7.66) in (7.67) and prescribing v = -ln[exp(2 )- 1], one gets 

The asymptotic (s behavior of (7.68) turns out to be 

(7.68)

(7.69)
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recovering the Poisson (~s) and CUE (~ ln(s) ) behaviors in the special
limits of 0 (z 1) and (z 0), respectively. Equation (7.69)
shows that the number variance in the intermediate region 
is an arithmetic sum of the Poisson and CUE behaviors. A work in 
this direction was recently developed by Ma and Hasegawa (1995). 

The s-linear term in (7.69) can be given an interesting interpretation 
by invoking a grand canonical treatment of the distribution of (7.58): 
In fact, Gaudin proposed an analogy with one-dimensional interacting 
gas, deriving from (7.58) an equation of state, with fugacity (or 
chemical potential) : 

(7.70a)

(7.70b)

where p and ρ are the pressure and particle density of the fictitious
gas. Equation (7.70) gives rise to the compressibility of the interacting 
gas,

(7.71)

which is just the coefficient of the s-linear term in (7.69). It is
controversial to take the thermodynamic limit N before the 
integration procedure in (7.66). As a prototype of the intermediate 
statistical behavior between the Poisson and circular unitary 
ensembles, however, the analysis leading to (7.69) merits further 
scrutiny.

7.5. Extension to Case of Several Parameters 

The gCM equation in 1+1 dimensions has been derived from the 
eigenvalue problem characterized by a single tunable nonintegrability 
parameter. No corresponding fundamental equation has yet been 
found, however, when several nonintegrability parameters are included 
in the Hamiltonian. We now consider the eigenvalue problem in this 
case. If several parameters are changed in the Hamiltonian, we shall 
see the occurrence of degeneracies of eigenvalues. Crossings of 
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eigenvalues have codimensions 2, 3, and 5 depending on the real, 
complex and quaternionic Hermitian nature of the Hamiltonian, 
respectively. The codimension here implies the number of 
independent parameters. As mentioned in the previous chapter, the 
formalism of quantum mechanics have some interesting features in 
the adiabatic limit. In particular, a fictitious gauge field is induced at 
the degeneracies and the wavefunction acquires a geometric phase 
induced by the gauge field in the adiabatic transport in d( 2)-
dimensional parameter space. Corresponding to this fact, we shall show 
below that in the adiabatic limit the eigenvalue problem with 2) 
parameters will be reduced to a field-theoretical model involving a 
gauge field (Nakamura et al., 1992).

Suppose the Hamiltonian has a form linear in the nonintegrability 
parameters x=(x 1 , x 2, • • • ,x d):

(7.72)

On the r.h.s. of (7.72), the first term represents the integrable part, 
and the second term consists of a set of d( 2) nonitegrable 
perturbations describing, for instance, the anisotropy energy, 
couplings with magnetic and electric fields, etc. Further, we assume 
that both H0 and {Vu} are Hermitian (H0

+=H0, Vu
+=Vu ) and mutually 

noncommutable:

(7.73)

(7.74)

From (7.73) and (7.74) , Gu and Guv prove to be anti-Hermitian operators 

Consider the desymmetrized spectrum corresponding to the 
(Gu

+ =-Gu, Guv
+=-Guv ).

eigenvalue problem 

(7.75)

The spectrum is now constructed in x space and each eigenvalue 
defines a hyper-energy surface. We can see contacts of adjacent 

energy surfaces at degenerate points, as well as the avoided crossings 
of these surfaces. In the vicinity of each degeneracy a pair of energy 
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surfaces constitute two sheets of a double-cone (diabolo). The diabolical 
point is a source of topological singularity: For a closed loop around 
the degeneracy in x space, a pair of eigenstates and 
joining the double-cone acquires the global Berry phase 

(7.76)

The formula (7.76) also applies to state The global phase 
(7.76) is due to the phase arbitrariness of eigenfunctions, i.e., an 
essential characteristics of the framework of quantum mechanics which 
manifests itself in the fact that eigenfunctions are multi-valued in a 
higher-dimensional parameter space, though of course single-valued in 
the configuration space. The integrand in (7.76), 
plays the role of gauge field. As a natural extension of the treatment 
of the single parameter case, one may anticipate that the presence of 
many diabolos and avoided crossings of hyper-energy surfaces would 
be an indicator of quantum nonintegrability characterized by several 
nonintegrability parameters. 

Taking {xu} as d -dimensional Euclidean "spacetime" coordinates, let 
us regard and with 

as internal classical vector and matrix fields, respectively. 
Note: D may be infinite. Einstein's contraction will 
not be taken below. Closely following the derivation of the 1+1 
dimensional Calogero-Moser system, let us take the x derivative of 
(7.75) and introduce a set of constant orthonormal vectors e1, e2, •• • , ed

with eu ev= we get

(7.77)

(7.7 8a) 

(7.78b)

with the nonnegative Hermitian which has its unique 
inverse Here 
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(7.79)

and λu is the lowest eigenvalue of Since in (7.79) does not include
xu, both and are xu-independent, so that which has been
exploited in deriving (7.78). For the description below we should also 
note that independent of n. Some properties of An,u,
defined in (7.77), are of interest. Contrary to the single parameter case, 
An,u is nonvanishing in general and acts like U(1) gauge field: Under
the gauge transformation transforms as 

but the magnetic field is gauge- invariant.
The comparison with existing results is straightforward: For d=1 with 
An,u=0, (7.78) reduces to the gCM system, while for d>1 and 
suppressing the level dynamics (7.78), only the gauge potential (7.77) 
is available. (Note however that, in case of d >s, the degeneracies are 
not isolated but form lines or surfaces where nonAbelian gauge field 

would appear. However, we here confine ourselves to 
the case d=s. )

For illustration of the case d=s=3, let us reinvestigate the standard
2x2 Hamiltonian (6.11) in the previous chapter, where H0= I, x=R
and V= The eigenvalue problem has a solution 
which, in the present notation, can be written as 

(7.80)

(7.81)

with R=(x2+y2+z2)½ and ={x2+y2+(R-z)2]-½ . The quantities u and v
are orthonormal basis functions in an R -independent (diabatic) 
representation. From the viewpoint of nonlinear dynamics, (7.80) and 
(7.81) should satisfy (7.78). Noting Gx=0, Gy,x=-i /2, and Gz,x=i /2, 

in (7.79) is given by and thereby 

(7.82)

As for the gauge field, using (7.81) in (7.77), one obtains 
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(7.83)

In a similar way, the y and z components are also available. The 
solution (7.80) and (7.81) prove to satisfy (7.78) only when the gauge 
potential in (7.83) is used together. This concrete example indicates a 
crucial role of the coupling of the gauge potential with level dynamics 
in the case d 2.

We now note that (7.78) with (7.77) can be obtained from a 
field-theoretical model. In fact, by introducing a classical Lagrangian 
density

with

and

we derive Lagrange equations from (7.84) as 

(7.84a)

(7.84b)

(7.84c)

(7.85a)

(7.8513)

(7.86)

As easily verified, (7.85) exactly reproduces (7.78). On the other hand, 
(7.86) yields the constraint given below (7.79). Noting = 

we can recover (7.77). 
In contrast with the generalized Calogero-Moser model in 1+1 

dimensions for the single parameter case, we have now a novel field-
theoretical model inspired by the eigenvalue problem associated with 

and multiplying (7.8513) or (7.7813) from the left by 
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several nonintegrability parameters. In this model, "spacetime"
coordinates represent a set of nonintegrability parameters, and matter 
fields and are coupled with fictitious gauge fields {An,u}. The
gauge fields here are composed of the matter fields themselves, as in 
the complex Grassmannian sigma model. We can proceed to search for 
instanton-like structures in (7.85) and (7.86) and to construct the 
statistical mechanics of (7.78), just as attempted in the gCM system. 

In case where two or more parameters are varied, the quantum-
mechanical signature of chaos should be the presence of many diabolical 
crossing points (monopoles) and avoided crossings between adjacent 
energy surfaces. If a single one of d( 2) nonintegrability parameters 
is changed, the resultant energy spectrum can be interpreted as a 
vertical cross-section of a landscape that consists of many sheets of 
energy surfaces piled on x space in d( 2) dimensions (see Fig. 7.7): In 
the spectrum, one can see only avoided crossings but no diabolical 
conical points (monopoles). The complicated energy spectra with 

Fig. 7.7. Piled sheets of hyperenergy surfaces in case of d=2. Cross-in-circles and
stars indicate diabolical degeneracy and avoided crossing, respectively. Inset: 
vertical intersection at plane. 
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many avoided crossings are therefore regarded as having a dense 
monopole population behind them. While, as pointed out in Chap. 1, 
the collapse of tori and onset of chaos are disturbing the foundations of 
the framework of quantum mechanics in the adiabatic limit when no 
quantum transition is allowed, we now understand that this 
framework already exhibits a very puzzling feature in the same limit. 

In closing this chapter, we should emphasize: (1) The irregularity 
of quantum spectra and wavefunctions is caused by the incompatibility 
between quantum and chaos. (2) The random matrix theory describes 
only a very limited quantal aspect of systems that are classically 
chaotic. (3) The dynamical and statistical treatment of gCM/gCS 
systems with some constraints will provide more potential issues 
that are strongly and directly related to experiments. 
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Chapter 8 

Towards Time-Discrete
Quantum Mechanics 

In this chapter, we shall forsake the traditional way of studying the 
problem of quantum versus chaos and attempt to implement my own 
idea of going in a radically new direction. This chapter is devoted to 
intensive investigation of the role of time discretization in both 
classical and quantum mechanics. Firstly, we shall comprehend how 
the time discretization in classical dynamics renders the time-
continuous integrable system nonintegrable and chaotic. We 
concentrate on the phenomenon of separatrix splitting and a 
complicated homoclinic structure that constitute a symptom of 
chaos. Taking a time-discrete dynamical system with a double-well
potential as an example, this interesting feature will be demonstrated 
analytically on the basis of asymptotic expansions beyond all orders. 

Secondly, to accommodate temporal chaos also in quantum
dynamics, we shall again introduce "time difference" ∆t and propose
a time-difference version of Heisenberg equation of motion. This 
new equation, preserving neither the unitarity nor equal-time
commutation rule for (originally) conjugate operators, is demonstrated 
to have a chaotic solution bearing a resemblance to that of the
corresponding classical dynamical equations. 

8.1. Stable and Unstable Manifolds in Time-Discrete Classical 
Dynamics

We have arrived at a suitable point in which to abandon the traditional 

162
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way of studying the problem of quantum versus chaos, which is to 
apply established quantum mechanics to classically-chaotic systems. 
So far we have addressed a series of questions arising from the 
incompatibility between quantum and chaos and also hint at the 
necessity to conceive an alternative framework of quantum mechanics 
that will allow genuine chaos in quantum dynamics. The latter point 
was also suggested previously in the epilogue of another book of mine 
(Nakamura, 1993). 

In this chapter, I shall try to materialize my idea to head in an 
altogether new direction, by discretizing "time. " The significance of 
the time discretization is well recognized in classical dynamics. So 
let us begin with elucidating how the time discretization in classical 
dynamics should lead to the Birkhoff-Smale's horse-shoe.

More than one century ago Poincare' (1890) pointed out the 
phenomenon of separatrix splitting and a complicated homoclinic and 
heteroclinic structure as a symptom of chaos. The homoclinic or 
heteroclinic structures caused by bifurcation of separatrices lead 
to Birkhoff-Smale's horse-shoe mechanism generating the chaos in
conservative dynamical systems. While numerical iterations of low-
dimensional mappings provide easily these complicated structures, it 
is extremely difficult to derive them analytically. However, the 
difficulty will now be overcome by using the asymptotic expansion 
beyond all orders. This method was first proposed and applied to a 
standard map by Lazutkin and coworkers (Lazutkin et al., 1988;
Gelfreich et al., 1994) and to other systems (Amit et al., 1992). A 
similar approach was developed independently by Kruskal and Segur 
(1991) in the context of crystal growth. The method was sharpened 
by being supplemented by the theoretical tools of Borel summability 
and Stokes phenomenon (Hakkim and Mallick, 1993; Tovbis, 1994; 
Tovbis et al., 1996). While this updated method is still in its infancy, 
we shall apply it to the time-discrete dynamical system with double-well
potential (Nakamura and Hamada, 1996). 

We shall analyze a symplectic mapping obtained by time 
discretization (via time difference σ) of canonical equations for the
dynamical system with a single degree of freedom. Consider the 
canonical equations of motion 

(8.1)

For concreteness, we choose a double-well potential 
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(8.2)

which is often encountered in describing the phase transition 
phenomena.

The set of equations (8.1) with (8.2) are widely encountered in 
various contexts: The Duffing equation without damping and driving 
forces takes the identical form; it also arises if one substitutes (x, t) 
=eiwt q(x) in the cubic nonlinear Schrödinger equation and then replace
x by t in the resultant form. While the above ordinary differential 
equation is integrable, we shall consider its time-difference variant 
obtained by discretizing time (with time difference σ). Among many
ways of time discretization, the symplectic mapping is the most 
essential; it is given by 

(8.3)

(By rescaling (8.3) is reduced to the map available from a 
periodically-kicked system, where σ2 plays the role of the kicking
strength. In this chapter, however, we shall choose the form (8.3) for 
convenience. ) 

The Jacobi matrix corresponding to (8.3) is 

(8.4)

The present map is area-preserving, since det M=1, and satisfies the 

symplecticity condition MTJM=J with J= [This condition is 

not satisfied by the map obtained via the Euler difference which 
replaces the 1st line of Eq. (8.3) by 

The map (8.3) and its continuum (8.1) and (8.2) have common 
fixed points, i.e., one hyperbolic, at (q, p)=(0,0), and the other two
elliptic at (q, p)= ( a, 0).

For (i.e., in the continuum limit), phase space is occupied by 
regular trajectories including a separatrix, i.e., the marginal trajectory 
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by which localized and extended trajectories are segregated (see Fig. 
8.1(a)). The separatrix is the most unstable against a perturbation and 
consists of a pair of degenerate manifolds: One is unstable and going 
away from the hyperbolic fixed point (HFP), while the other is stable 
and coming into HFP. On switching a perturbation arising from 0, 
the splitting of the separatrix occurs, yielding an infinite number of 
crossing points (homoclinic points) that accumulate as HFT is 
approached (see Fig. 8.l(b)). The separatrix splitting and complicated 

Fig. 8.1. Trajectories in phase space: Separatrices are emerging 
from hyperbolic fixed point at (0,0). (b) 0. Splitting of degenerate separatrices 
for the right half. 



166 Chapter 8 

homoclinic structures lead to the genesis of chaos. We shall carry out 
the asymptotic analytical expansion of the unstable manifold 
emanating from HFP at (0,0). While concentrating on the system 
with a double-well potential, the analysis hereafter will extend to 
more general systems such as those with cubic and cosine potentials. 

8.2. Breakdown of Perturbation Theory 

Prescribing qn and qn+1 as y(t) and y(t+ respectively, let us
concentrate on the unstable manifold yu(t) with the initial condition 
lim yu(t)= 0. For brevity, yu(t) will be taken as y(t) in the following. A 

pair of Eqs. (8.3) are then reduced to a second-order difference 
equation for y( t): 

(8.5)

with

Melnikov.

one may rewrite (8.5) as 

Let us first attempt applying the ordinary perturbation theory 'a la 
Using Taylor's expansion as 

8.6)
Taking the last term on the r.h.s. of (8.6) as a perturbation, we 
expand the solution y(t) in a power series of : 

(8.7)

The lower index of y0(t) is used to indicate that the solution in (8.7) will 
turn out to be incomplete without "terms beyond all orders." Using
(8.7) in (8.6), equations are obtained successively for each power of 
:

(8.8a)

etc. (8.8b)
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For the unperturbed system (8.8a), we have 

(8.9)

The functions y0n(t) for n =1,2,• • •, have the following properties: (i) 
They should satisfy the boundary condition ensuring that the orbit 
(constructed from (8.7)) will start from HFP at (0,0) : 

(ii) Their parity is even: y0n(-t)=Y0n(t), for n=1,2,• • •, because of the
even-parity nature of the inhomogeneous term on r.h.s. of (8.8b) and 
the uniqueness of the solution for y0n(t), for n=1,2,• • •, under the
unique initial condition. 

of (8.8b) is a sum of a general solution for its 
homogeneous part and the special one for the full inhomogeneous 
equation. The former is a linear combination of two independent 
solutions v 1(t) and v2 (t) given by 

The solution 

(8. 10a) 

(8.10b)

Any linear combination of (8. 10a) and (8. 10b), however, cannot satisfy 
both (i) and (ii) at the same time: v1(t) has an odd parity and is
incompatible with (ii); v2 (t) diverges for t Hence the solution of 
(8.8b) is inevitably provided by the latter special contribution alone, 
i.e.,

(8.11)

Because of the even-parity nature, the result (8.11) can lead to no 
splitting of the separatrix, which is not consistent with the issue of 
numerical iteration of the map (8.3) with >0. 

This paradox is caused by the singularities of (8.9) and (8.11) 

at with m=0,1,• • • , encountered in changing the time
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t continuously from to t=+ in the complex time plane. In fact, 

in the neighbourhood of tc= ,

(8.12a)

Similarly, reflecting the degree of the singularity of the inhomogeneous 
part of (8.8b), we find 

(8.12b)

The behaviour in (8.12) indicates that all orders in the expansion (8.7) 
give the contributions of the identical magnitude of at 
and that the perturbation theory breaks down there. The crucial poit is 
that we meet the Stokes phenomenon: (i) Stokes line is emanating 
from t=tc; (ii) a suitable odd-parity correction should be incorporated in 
crossing this line. 

To analyze this phenomenon and to capture the "terms beyond all 
orders," we next derive the internal equation, effective in the vicinity 
of t =tc .

8.3. Internal Equation and Stokes Phenomenon 

Let us enlarge a scale of time in the neighbourhood of t=tc and decrease 
the magnitude of y(t) by making a transformation (see Fig. 8.2) 

(8.13a)

(8.13b)

Using (8.13) in the original equation (8.5), we obtain the internal
equation
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Fig. 8.2. Transformation of vicinity of t=tc from t plane to enlarged z plane.

(8.14)

with Note that the tiny circle =1 is
now mapped to the big one, By suppressing the small 
contribution of which gives pre-exponential corrections in the 

result, (8.14) becomes a σ-independent equation

(8.15)

Let and be the solutions for unstable and stable manifolds, 
respectively. In the limit with Rez <0 (Re z >0), the solution of
(8.15) has an asymptotic form 

(8.16)

which retains the connection with the external solution (in the region 
with and (see Fig. 8.2): 

(8.17)
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For any finite value of z, however, cl grows much larger than z 2l+1 with
increasing l as seen in (8.12b)] so that, except 
for (8.16) diverges and becomes meaningless. Since the 
asymptotic expansions at and cannot therefore be connected 
smoothly so long as the finite z region is crossed, we shall take a 
counter-clockwise path along the lower semicircle with In this 
case, the Stokes phenomenon appears: In crossing the Stokes line at 
arg(z)=- /2, we acquire an exponentially small term responsible 
for the separatrix splitting that is being searched for. 

In this context we shall invoke the idea of Borel Summation. The
Borel summation fashions a convergent sum from a divergent series by 
resorting to the Laplace transformation. (The idea is based on the 
resummation of a divergent series by a suitable reordering of the 
terms.) The Borel or inverse Laplace transformation of (8.15) yields 

(8.18)

where we have used the transfornations 

The r.h.s. of (8.18) is a convolution defined by 

The Borel transformation of the asymptotic solution (16) leads to 

(8.19)

Because of the convergence of coefficients the 

divergent series will become Borel summable. In terms of V(p)
in (8.19), solutions for stable and unstable manifolds are given by 

(8.20a)
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(8.20b)

Thanks to the convergence of V(p), the integrals in (8.20a) and (8.20b) 
are convergent in the right (Rez >0) and left (Rez<0) semi-circles,
respectively. Hence both of them are Borel summable. 

As recognized in (8.18), V(p) has singularities at p= ± 2 (n=1,2, 
• • •). In the Imz<0 region, can be obtained by taking
the p-integration along the counter-clockwise path surrounding the
positive imaginary p axis, and its resultant expression is given by 

(8.21)

The expansion (8.2 1) captures exponentially small terms beyond all 
orders. This point will be made more explicit in terms of the difference 
function defined in Im z<0 as

(8.22)

where the integration path y is indicated in Fig. 8.3(a). The poles of 
V(p) contribute to the integration in (8.22), leading to the converged 

Fig. 8.3. (a) Integration path y in p plane for obtaining . The path y is
deformable wherever no pole distributes. (b) Regions of convergence in z plane:
Vertical-, horizontal-, and cross-hatched regions for and respectively. 
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values of in the z region indicated in Fig. 8.3(b). is a direct 
manifestation of the separatrix splitting. In the limit with
Imz < 0 and Re z>0, is expressed as in (8.21) since, in this region,

.
The Stokes phenomenon occurs on the Stokes line at arg(z)=- /2,

where the asymptotic solution (8.21) for demonstrates an abrupt 
change. On the Stokes line, noting the relation and 

we find 

From (8.22) and (8.23), the equality 

(8.23)

(8.24)

is obtained, which means that the real part of leads to the 
separatrix splitting. 

We shall proceed to substitute the expansion (8.21) into the 
internal equation in (8.15), deriving equations successively in each 
power of the exponential: 

(8.25a)

etc. (8.25b) 

The asymptotic ) solution to the lowest order is given by 

(8.26)

in (8.25b), the leading term of turns out On using 

~z3. This issue reflects that V(p) has a singularity described as

(8.27)

In fact, we observe: 
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(8.28)

c is a Stokes constant to be evaluated. Except for this 
numerical factor, we have succeeded to demonstrate the exponentially 
small term beyond all orders. By defining 

(8.29)

one may put c = 2 iK , as recognized in (8.28). (In (8.29), B [• ](p)
implies a Borel transformation.) We shall show briefly a way to 
evaluate K.

Stokes Constant 

This description is concerned with a technical details of calculating
the Stokes constant (8.29). Readers therefore may take note of the 
final result below Eq. (8.39) and skip to Sec. 8.4. 

To begin with, let us define 

(8.30)

Applying an elementary formula for Laplace's transformation, we find 

(8.31)

where Dp
(-3) implies triple integrations over the variable p. Using in

(8.31) the expansion (8.19) or its refined version, 

one obtains 

(8.32)

(8.33)
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and the resultant expansion of C(p) becomes

with

(8.34a)

(8.34b)

Recalling the description above Eq. (8.21), C(p) and A(p) are seen to 
have the common singularities at p=± 2 i. From (8.27) and (8.31), 
these singularities take the form Therefore the following 
relation holds 

(8.35)

Comparing the coefficients in (8.34a) and (8.35), the equality 

(8.36)

obtains. Futhermore, since lim 

K is related to x via

(8.37)

Using (8.34b) and (8.36) in (8.37), K in (8.37) turns out to be
expressible in terms of the limiting value of vk as

(8.37')

What remains is to derive the equation for {uk} and to solve it

>numerically. Exploiting the formula 

with positive we have 
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(8.38)

Substituting (8.38) into the convolution equation (8.18), we get a 
recursion equation: 

(8.39)

By numerical iteration of (8.39) under the initial condition 
(which is provided by (8.12) and (8.32)), vm can be evaluated for large 
m, which will determine the converged value K in (8.37'). Our 
computation has derived the value K~89.6.

8.4. Asymptotic Expansion Beyond All Orders and Homoclinic 
Structures

We are now facing the task of matching the internal solution to the 
external one. In this context, we shall envisage the panty of the solution 
and the role of the Stokes constant to show up in t-plane.

Following the expansion of the internal solution in (8.21), the 
refined external solution is expected to be given by 

(8.40)

where S(t) describes an abrupt change of in crossing the Stokes 
line at Ret=0 and is represented by a step function as

(8.41)

The substitution of (8.40) into the original difference equation in (8.5) 
yields

(8.42a)
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(8.42b)

In order to obtain the lowest-order solution y10(t) for , it suffices 
to take the lowest-order solution for

(see (8.9) and (8.11)). In this approximation, 
y10(t) satisfies a differential version of (8.42b): 

As discussed in Sec. 8.2, (8.42b') has a general solution 

(8.42b')

(8.43)

where v1(t), v2(t) are already given in (8.10). Integration constants c1,c2

will be determined by means of matching with in the 
neighbourhood of We proceed as follows. 

First we introduce a small parameter δ =t-tc. Noting the identities
and  , v1 (t) and v2(t) can be 

rewritten as 

(8.44a)

(8.44b)

As easily observed, v 1(t) is an even function of δ, while v2 (t) consists of
both even and odd terms. Recalling the odd parity nature of (see 

(8.2811, y10(t) in (8.43) should also be an odd function of δ, which is
possible so long as 

(8.45)

is satisfied. The constant c2 itself is related to the Stokes constant by 
matching of y10 with on the negative imaginary axis of the z
plane (i.e., on Stokes line) as 



Towards Time-Discrete Quantum Dynamics 177

(8.46)

Thanks to (8.45), y10=- Using,
5 5 

in (8.46), this fact together with (8.24) and (8.28), we find 

and hence 

(8.47)

(8.48)

Since we already know the value of Stokes constant c=2 iK (see the
final result of the previous section), the value of c2 in (8.48) is also 
determined.

There is an additional contribution arising from another singularity 

closest to the real t axis at (see above (8.12)). This 

contribution is merely the complex conjugate of the existing result for 
y10 Combining a pair of contributions, the asymptotic behavior 
of yu on the real axis is finally given by 

(8.49)

Therefore yu can explicitly be written up to terms l ( = n+n') =1 as 

(8.50)

with v1(t) and v2(t) given by Eqs. (8.10). 

(qu, pu) is constructed by the replacement 
Finally, coming back to the symplectic map in (8.3), the solution for 

(8.51)

Readers will perceive in Fig. 8.4 a nice agreement between the 
asymptotic analytical result and the outcome of the numerical iteration 
of the map (8.3). The sequence of dots are obtained by numerical 
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Fig. 8.4. Unstable manifold with hyperbolic fixed point ( x ). Arrow indicates 
direction of journey. Solid curve for analytical result and series of dots for 
result of numerical iteration of map:
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iteration of the map (8.3) for an assembly of initial points on the 
linearized unstable manifold at HFP ( on one of the eigenvectors of the 
monodromy matrix (8.4) ). As for the analytical result, it should be 

the complete Stokes phenomenon occurs, ensuring an 
abrupt change of S in (8.41) in crossing the Stokes line at Ret=0. For
larger values we shall see a more or less incomplete Stokes 
phenomenon, i.e., a mild growth of S(t) in a narrow region around 
Ret=0. However, this problem can be resolved by exploiting an
appropriate constant value for S(t) for t>0 in (8.41). In fact, with a
choice of S=0.82 for t>0, (8.50) proves to work very well for any value
of between 0.1 and 0.3 (see Fig. 8.4). Figures 8.4(a) and (b) are the 
magnification of the vicinity of HFP. The unstable manifold starting 
from HFP, after executing a long clockwise journey, comes back again 
to the vicinity of HFP, but accompanied by violent undulations. The 
asymptotic analytical line proves to fit the result of the numerical 
iteration of (8.3), describing the stretching of the area enclosed by the 
stable and unstable manifolds. When is decreased, violent undulations 
begin to occur in the further vicinity of HFP; see the extremely small 
scale unit ~10-4 for both p and q axes in Fig. 8.4(b). 

Noting that the stable manifold is merely the time reversal of the 
unstable manifold, let us proceed to consider an angle for the 
intersection between the stable and unstable manifolds at the first 
homoclinic point t=0, where the unstable (stable) manifold begins
(ceases) oscillations. Let yu(t) be divided into the even- and odd-parity
parts as 

where
(8.52)

(8.53a)

(8.53b)

Then the unstable and stable manifolds are constructed respectively by 
qu(t)=I(t) + E (t) and qs(t)=I(t)- E (t), with pu(t) andps(t) expressed by 
(8.51). In the neighbourhood of the first homoclinic point, we shall 
concentrate on the small time satisfying pu

(see Fig. 8.5). Since the intersection angle is given by 

(8.54)

noted: If  
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Fig. 8.5. Intersection angle 

Noting (A means and using S(0)=1/2 (see
(8.41)), is seen to become The final 
result shows an essential singularity at 

(8.55)

where α 1 and are positive real constants and µ is a positive integer. 

Their values are 
In this way, we have analyzed a time-discrete classical dynamics or 

the symplectic map by resorting to the asymptotic expansion beyond all 
orders, based on theoretical tools of Borel summability and the Stokes 
phenomenon. The homoclinic structures are shown to be nicely 
described by the analytical expression in (8.49) and (8.50), including 
only l=0, 1 terms. In particular, the stretching-type oscillations
appearing in the extreme vicinity of the hyperbolic fixed point recovers 
excellently the result of numerical iteration of the map (note the 
scale units~10-4 in Fig. 8.4(b)). Inclusion of higher-order (l 2) terms
is anticipated to derive the folding mechanism and thereby to complete 
the Birkhoff-Smale's horse-shoe mechanism for genesis of chaos in 
conservative systems. The application of the present method to other 
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maps, such as standard and Henon maps, is straightforward. For 
instance, the intersection angle for the first heteroclinic or homoclinic 
point is given as well by the universal form in (8.55) but with 

and (8, respectively, for standard 
and Henon maps. 

The present framework based on the updated method of asymptotic
expansions beyond all orders, suffering from neither peculiarity nor 
any particular difficuty of the model, will be very useful for the 
analytical study of chaos in general, which has been investigated 
mostly by numerical computations or scaling arguments for long time. 
In this context one can also apply the present method to dissipative 
systems, since symplectic properties have not been used so far. It is 
further desirable to proceed to study analytically the quantum and 
semiclassical analogues of the homoclinic structures. 

Thus, time discretization radically changes the nature of the time-
continuous classical dynamical systems. The violent undulation of 
heteroclinic or homoclinic structures in the vicinity of HFP occurs for 
a small but nonvanishing time difference. Can we see an analogous 
outcome resulting from discretizing the time varivable in quantum 
dynamics ? We shall proceed to consider this question. 

8.5. Time Discretization and Quantum Dynamics 

As has been repeatedly addressed in the previous chapters, the present 
formalism of quantum mechanics cannot allow a genuine quantum 
chaos, due to the linearity of Schrödinger equation. Strictly speaking, 
N-body wavefunctions in open systems might have nonzero KS entropy
in the limit N but it cannot have a positive Lyapunov exponent, 
characterizing the extreme sensitivity to initial conditions. However 
we have a pertinent observation on the existence of classical-quantum
correspondence: If classical chaos is present, quantum chaos should 
also be anticipated. 

Let us here review briefly how Schrödinger hit upon his idea for 
describing quantum dynamics. The time-dependent Schrödinger 
equation was first proposed in the fourth communication of his series 
on wave mechanics (Schrödinger, 1926). He postulated a wavefunction 

to satisfy the time-dependent linear differential equation 

(8.56)



182 Chapter 8 

by closely following the linear equation for a classical monochromatic 
wave. When combined with the time-independent partner 
this form gave rise to the familiar time-dependent equation. The form 
(8.56), however, describes only a time-periodic or -quasiperiodic wave. 
So long as Schrödinger relied on (8.56) as the foundation of his 
thinking, the time-dependent Schrödinger equation inevitably 
excludes any solution representing temporal chaos or turbulence in 
general. The de Broglie particle to which Schrödinger referred, showing 
only periodic or quasi-periodic motions in the underlying classical 
dynamics, is indeed dual to the monochromatic wave with a 
characteristic frequency. For a classical particle executing chaotic 
motion, however, no characteristic frequency can exist. Rather the 
motion is characterized by a continuous broad spectrum. In 
constructing the corresponding quantum mechanics, therefore, one 
may also conceive of a nonlinear dynamical equation for (Weinberg, 
1989) which will accommodate a chaotic solution. 

For systems showing chaos in the underlying classical dynamics, 
let us investigate another possible formalism of quantum dynamics 
which leads to quantum chaos while recovering the existing 
Heisenberg or Schrödinger equation in a suitable limit. 

One possibility is to discretize time t. The progress in nonlinear 
dynamics and chaos over past decades has elucidated that chaos is 
easily generated from the time-difference variant of the time-continuos
integrable system. In previous sections of the present chapter, we 
have confirmed this fact. Motivated by this discovery and also by our 
expectation to understand more clearly the uncertainty principle 
between time and energy in our microscopic cosmos, let the 
continuous time be discretized. In this context it will be very convenient 
to scrutinize Heisenberg equation of motion, which has a direct 
correspondence with the classical equation of motion. 

Our reasoning will parallel that of T. D. Lee (1987), who wrote: "
For more than three centuries we have been influenced by the precept 
that fundamental laws of physics should be expressed in terms of 
differential equations. Difference equations are always regarded as 
approximations. I try to explore the opposite: Difference equations are 
more fundamental, and differential equations are regarded as 
approximations ” 

In the remaining half of this chapter we shall accept that time-
discrete quantum mechanics should correspond to time-continuous
classical mechanics and proceed to analyze a time-difference variant of 
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Heisenberg equation of motion in order to explore the possible genesis 
of quantum chaos. 

8.6. Time-Discrete Unitary Quantum Dynamics

Several attempts to discretize the time already exist (Moncrief, 1983; 
Bender, 1985; Lee, 1987). Among them, the "leapfrog" method proposed 
by Moncrief is the simplest and most explicit. It will be described 
below.

For a system with N degrees of freedom with Hamiltonian 

(8.57)

Heisenberg's equation of motion for the operators q=(q1 ,q2, • • • ,qN)
and p=(p1,p2,• • • ,pN) are

(8.58a)

(8.58b)

By introducing the time difference t, let us discretize the time as 

(8.59)

At these discrete times, q and p will be written as q(j) and p(j). With
a help of auxiliary momenta defined at half-integer time steps (see 
Fig. 8.6), consider a time-difference version of Eq.(8.58): 

Prescribing the momenta p(j) conjugate to q(j) as

and rewriting in (8.60) in terms of pk(j), one finds 

(8.60a)

(8.60b)

(8.61)
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Fig. 8.6. Unitary time discretization (Moncriefs leapfrog method). 

(8.62a)

(8.62b)

Equation (8.62) may be interpreted as a nonlinear symplectic 
mapping for matrices q(j) and p(j). (For the symplecticity, see the
condition below Eq. (8.41.) The astonishing fact is that, for any 
nonvanishing Eq. (8.62) proves to be generated by the unitary 
transformation

(8.63a)

(8.63b)

with the unitary operator U(j) defined by 

(8.64)

In fact, using the identity eB A eB=A +[B ,A ]+(2!)- 1[B ,[B ,A ]]+ • • • , one can
show that 
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and

(8.65a)

(8.65b)

Application of Eqs. (8.65), together with another identity 

(8.66)

leads to the equivalence between (8.62) and (8.63). The unitary operator 
(8.64) is an approximation to the true one 

Thanks to its unitarity, the transformation 
(8.62) preserves the equal-time commutation rule (ETCR) at each 
time step j ,

(8.67a)

(8.6b)

and, despite its appearance of a nonlinear symplectic mapping for 
matrices q(j) and p(j), it is merely a linear mapping that is unable to
generate any temporal chaos. These features are in contrast with those 
possessed by classical symplectic mappings. 

The mapping (8.62) or (8.63) can also be rewritten in the Schrö 
dinger-Feynman’s formalism. Let us prescribe as a state vector 

at the discrete time Using the unitary operator (8.64), a discrete 
variant of Schrödinger equation is given by 

or, in the coordinate representation, by 

(8.68a)
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(8.6813)

with = and an integration kernel 

Despite the time discretization, both the unitarity and linearity of the 
mapping (8.68) are obvious for any large value of 

8.7. Time-Discrete Non-Unitary Quantum Dynamics 

Although Moncrief s intention lies in constructing a fully consistent 
quantum field theory on a lattice, i.e., on Minkowsky space, let us 
develop further an attempt of time discretization of quantum systems 
exhibiting classical chaos . 

Heisenberg's framework of quantum mechanics is superior to that 
of Schrödinger in that the former has a direct connection with the 
classical canonical equation, while the latter has not. Historically, the 
Heisenberg's framework can be traced back to Bohr's two postulates: 
The first is the the quantization of action (i.e., adiabatic invariant) 

(8.69)

or its generalization to systems with N(>1) degrees of freedom

(8.70)

with =1,2,• • • ,M and nk=0,1,2,• • •. and mk represent mutually-
independent closed paths and Maslov index, respectively (see Chap. 
1); the second is the frequency rule 

(8.71)

The former rule led Born and Jordan (1925) to the discovery of a 
commutation rule for canonically-conjugate observables, e.g. Eq. (8.67). 
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Two rules are embodied in the Heisenberg equation of motion for a 
Hermitian operator or matrix A:

(8.72)

The action J in (8.70) is calculable only when each classical orbit 
executes a closed path on the torus. 

In classically-chaotic systems, however, the collapse of tori prevents 
us from calculating the action on l.h.s. of (8.70) and consequently 
breaks the rule (8.70). The ultimate result should be that a logical 
foundation for the commutation rule (8.67) becomes ambiguous! It is a 
truth that the present-day quantum mechanics (Dirac, 1930) is 
constructed on the basis of two postulates (8.67) and (8.72) without any 
linkage to the old quantization rule in (8.69) and (8.70) and that its 
validity has been guaranteed by accumulation of experiments. But the 
foundation for the commutation rule (8.67) is traced back to (8.69) and 
(8.70). Although a modification of the commutation rule in chaotic 
systems might give rise to quantitatively small corrections in 
experiments, its role in the framework of quantum mechanics is 
beyond any conception. 

Nevertheless, the ambiguity about the commutation rule is not a 
serious problem in our construction of a time-discrete quantum 
mechanics, where both conditions and are employed. Let us 
discretize time as in units of a fundamental 
time interval ∆ t . By replacing the time differential of a Hermitian
matrix A by (Euler's) time difference, 

(8.73)

(8.74)

This form inevitably breaks the unitary property and cannot keep the 
equal-commutation rule preserved in the time continuum limit. 
Therefore neither rule nor a way will exist by which to calculate the 
r.h.s. of (8.74), each time we should take a single time step forward. 
As an attempt to overcome the difficulty and to complete the time-
discrete quantum dynamics, we propose: (i) to use forcibly the 
commutation rule (8.67) in calculation of the r.h.s. of (8.74) at each 

(8.72) becomes 
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time step or (ii) to replace the r.h.s. of (8.74) simply by a Hermitian 
variant of the Poisson bracket as It should be 
noticed that, in some of systems including the example below, the two 
methods (i) and (ii) prove to yield the identical result. 

We shall now concentrate upon a spin system. The advantage of 
the spin system is that its Hilbert space is finite-dimensional and 
that, for any finite magnitude of quantum spin, the Hamiltonian 
matrix is also finite-dimensional with no necessity of artificial matrix 
truncation. As a concrete example, we choose a spin system driven 
by the x-polarized and time-periodic magnetic field B with period T=

which is decribed by Hamiltonian 

(8.75)

The 1st and 2nd terms on the r.h.s. of (8.75) represent an easy-plane
anisotropy and Zeemann energy, respectively. (The -kick type driving 
field will not be considered, since our interest lies in discretization of 
time.)

Let us first develop the classical treatment. Using Poisson brackets 

(8.76)

and the Hamiltonian (8.75), the equation of motion for the spin S is 
given by 

(8.77)

The squared spin S2 is a constant of motion and is taken to be unity. 
Then, numerically iterating (8.77), we keep trajectory values at 
integer-multiples of period T. By introducing polar coordinates 

the Poincare' surface for a 
section in the plane is depicted in Fig. 8.7, which clearly exhibits 
a transition from tori to chaos with increasing B.

To see a quantum analog of this transition, we shall analyze 
Heisenberg's equation of motion for the spin matrix, by keeping time 
continuous. The equation of motion in the quantum case reads 
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Fig. 8.7. Poincare' section for classical spin dynamics Polar coordinates 
are defined by (a) weak field case (A=1.0, µB-0.3),
(b) strong field case (A =1.0, µB=1.0). The same values are used in Figs. 8.9 and
8.10.

(8.78)

The quantum-mechanical counterpart of Lie algebra (8.76) is the 
commutation rule 

From (8.78) and (8.79), we have 

(8.79)

(8.80a)

(8.80b)

(8.80c)

Choosing as bases Fock states with 
Eqs. (8.80) might be regarded as three nonlinear 

high-dimensional matrix equations for Hermitian matrices. It is not 
legitimate, however, because (8.80) keeps the commutation rule (8.79). 
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(The proof is given by induction.) In other words, all the matrix 
elements for (=0) are constants of motion, whose 
number equals to that of the (complex) variables, i.e., matrix 
elements of Sx, Sy and Sz. (In the case S= a more rigorous 
argument is required.) As a consequence, any solutions of (8.80) are 
not chaotic but recurrent. 

Following (8.73) and (8.74) together with the proposal below them, 
we shall now proceed to discretize the time variable as •

(see Fig. 8.8) and rewrite the original Heisenberg equation 
of motion (8.80). The time differential on the l.h.s is taken as the 
Euler difference 

(8.81a)

and expressions on the r.h.s. are replaced by using values at tj :

(8.81b)

(8.81c)

Fig. 8.8. Non-unitary time discretization: (a) time difference, (b) normalization 
of spin S.
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As emphasized below (8.73) and (8.74), the time discretization like 
(8.81) will break the unitary property and cannot keep the equal-time
commutation rule (8.79). Nevertheless, at each time step in the time 
evolution we shall have recourse to (8.79) to calculate the r.h.s. of 
(8.80). The resultant time-difference variant of (8.80) should take the 
following form: 

(8.82a)

(8.82b)

(8.82c)

Further, after each iteration of the difference equation (8.82), the 
replacement (S(S+1)/Tr(S2(j+1) )) ½ S(j+1) S(j+1) will be made so that
the spin matrix should preserve the normalized magnitude S( S+1)
(see Fig. 8.8(b)). Amazingly, (8.82) is also valid on regarding the 
classical equation (8.77) as the quantal equation for Hermitian 
matrices and on replacing the Poisson bracket on the r.h.s. of (8.77) 
by its Hermitian variant. 

Fig. 8.9. Poincare' section of attractor for quantum spin dynamics. The spin 
coherent state with is used for the representation. Time difference 

t =T /3: (a) weak field case, (b) strong field case.
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Since, for S=1/2, (8.82) is a trivial linear map, we proceed to
solve (8.82) numerically in the case S=1, where each component of
S constitutes a 3 x 3 matrix. The result for valus of S at integer 
multiples of the period ) is given in Fig. 8.9. In this figure, 
the expectation value of S in a spin-coherent state is taken. The 
mapping (8.82) is not area-preserving and constituting a dissipative 
system, which is a weak point to be improved in future. However, both 
Fig. 8.9 and the autocorrelation function in Fig. 8.10(a) indicate the 
transition from regular to chaotic behaviors with increase of the 
magnetic field. 

An amusing feature can be found in the degree of breaking the 
commutation rule defined by 

(8.83)

The time dependence of in Fig. 8.10(b) shows small and large 
fluctuations corresponding to regular and chaotic behaviors of the 
quantum spin, respectively. 

This result is sensitive to the magnitude of We find that, with 
decrease of the chaotic behavior is replaced by a regular one. 

Fig. 8.10. (a) Autocorrelation function of <Sx(j)>. Dotted and solid lines are for 
weak and strong field cases, respectively. (b) Time dependence of Gray and 
black dots are for weak and strong field cases, respectively. 
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More precisely, there exists a threshold : Chaos emerges for > 
depends on the degree of quantumness ( ~S-1 ) and decreases 

as the classical limit S= is approached. The phase diagram in Fig. 
8.11 depicts schematically a border curve between the collapse and 
genesis of genuine quantum chaos. The time-discrete variant of 
quantum mechanics thus describes a transition from regular to 
chaotic behaviors of quantum variables. In the present formalism, one 
can move from quantum to classical mechanics by taking both limits 

and
Since the proposed map (transformation) (8.82) is not symplectic 

but dissipative, one is tempted to invent an improved map. For instance, 

(8.84)

might be conceivable as a spin analog of the Moncrief’s time-
discretization scheme in (8.62) or (8.631, in terms of a unitary matrix 
given by 

(8.85)

Fig. 8.11. Phase diagram for occurrence of quantum chaos. 



194 Chapter 8 

Equation (8.85) is an approximation to the genuine unitary matrix 
In fact, Although 

(8.84) with (8.85) is a quantum version of the symplectic map for the 
classical spin dynamics, it preserves the commutation rule (8.79). 
Despite exhibiting a feature of the nonlinear high-dimensional map, 
(8.84) with (8.85) is a linear map yielding absolutely regular orbits. 

Fluctuations of Fundamental Time Step 

The way of time discretization should be justified by means of time
quantization. Meanwhile, there exists no good idea of such 
justification. While the fundamental time step ∆ t has so far been
assumed constant, let us replace it by the stochastic variable 
(with the mean and the variance 
obeying the uniform distribution defined in the region In 
this case, the erratic behavior of the quantum spin is anticipated 
without resorting to the non-unitary transformation, which will also be 
described below. 

We reconsider the ordinary unitary transformation (8.84) for the 
S=1 quantum spin under a unitary operator

(8.86)

where . When is small enough, 
there is no difference between the time-continuous and time-discrete
quantum spin dynamics, and the quantum dynamics exhibits merely 
the quantum recurrence, irrespective of the magnitude of the driving 
field B. If At will become of the order of however, the 
quantum spin dynamics shows a variety of features, depending on B.
Figure 8.12 is the temporal behaviours of the expectation value Sx(j) 
in the same spin coherent state as used in Fig. 8.9. Although the 
dynamics with a fluctuating step ∆ ti is identical to the one with the
constant step A t in the weak field case, the discrepancy between two 
kinds of dynamics is serious in the strong field case. Consequently, 
despite the unitary property of the quantum dynamics with a fluctuating 
step, the theorem of the quantum recurrence is broken for the strong 
field case. In fact, the time series of <Sx(j) > at the successivec discrete 

times (~ integer multiples of the period T) exhibit a 
transition from periodic to erratic behaviours with increasing the 

driving field. 
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Fig. 8.12. Time series of <Sx(j)> for the case of fluctuating and time 
difference (a) weak field case (A=1.0, µB=0.05), (b)
strong field case (A =1.0, µB=1.0) The same values are used in Fig. 8.13. Broken
lines are for the case with no fluctuations, ie., for any i.

Fig. 8.13. Autocorrelation function of <Sx(j)> for the case of fluctuating : 
(a) weak field case, (b) strong field case. 
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Figure 8.13 is the autocorrelation function of <Sx(j)>. We see the 
rapid decay and persistence of the correlation for the strong and weak 
field cases, respectively. Therefore, the fluctuations of uncover the 
difference between chaotic and regular dynamics that is hidden in 
both the time-continuous and discrete-time unitary quantum dynamics. 

the apparently chaotic behavior discussed here is 
caused by the stochastic behavior of the fundamental time step and not 
by the deterministic mechanism. It is not valid to call the present 
erratic behaviors as the deterministic chaos. We are therefore led to a 
conclusion that, unless we should break the unitarity in quantum 
dynamics, any kind of time-difference equation could fail to yield a 
chaotic solution. To obtain genuine chaos in quantum mechanics, it 
is crucial to pursue a non-unitary time evolution. 

Nonetheless,

8.8. Problems to be Examined 

In this chapter, after a thoroughly comprehensive investigation into 
the role of time discretization in the (originally) time-continuous
classical dynamics, we have analyzed various time-discrete variants 
of Heisenberg's matrix equation of motion. To suppress an artificial 
nonlinearity arising from finite truncation of infinite-dimensional
matrices, we have concentrated on the spin system. Any kind of 
time-difference equation preserving unitarity proves to exhibit no 
indication of chaos, because of its reduction to the strictly linear map 
for the wavefunction. We have therefore proposed a non-unitary time 
evolution of spin matrices, displaying a numerical evidence of 
transition from tori to chaos, i.e., a genuine quantum chaos. 

Quantum chaos is shown to appear when the fundamental time 
step is larger than some threshold below which it dissappears. 

itself has a maximum at the quantum limit S=l/2 and decreases
as the classical limit S= is approached. The scheme proposed above, 
reducing exactly to the time-continuous Heisenberg equation of motion 
in the limit is compatible with the existing framework of 
quantum mechanics. 

As for a candidate for , one may point out, for instance, the time 
interval for a photon to traverse the electron diameter; actually it is 
meaningless to imagine the continuous time variation within such 
an unmeasurable interval. It is desirable to carry out the time-
dependent measurement with high precision for the purpose of 
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observing quantum chaos induced by the time discretization, however 
difficult a task that would be. To place the present scheme on a more 
sound basis, there are many serious queries to be addressed: (1) We
have concentrated on a special kind of non-unitary evolution. Which 
one is the most substantial among various kind of non-unitary time 
evolutions? (2) We have investigated the Heisenberg equation of 
motion, which is convenient for seeing relationship with the classical 
equation of motion. But, what will be a corresponding discrete-time
evolution of wavefunctions? Is it still possible to provide a probabilistic 
interpretation of in the case when the unitarity is not satisfied any 
more? (3) Can we extend the present scheme to more general 

commutation rules ? (4) Is it possible to improve the present trial by 
inventing a time-discrete symplectic but still non-unitary quantum
dynamics ? All these questions remain to be answered. 
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Chapter 9 

Conclusions and Prospects 

As we have hitherto studied, the present framework of quantum 
mechanics cannot yield genuine chaos characterized by positive 
Lyapunov exponents. The quantum dynamics of systems with a few 
degrees of freedom does not exhibit temporal behaviors other than 
periodic or quasi-periodic oscillations characterized by discrete energy 
spectra. It is true that quantum dynamics of many-body open 
systems may have nonzero generalized KS entropy extended to 
systems obeying the non-commutative algebra, but such dynamics 
cannot be endowed with any positive Lyapunov exponent. So far 
much space has been devoted to the semiclassical quantization of 
chaos and random matrix theory, which are exploited by a growing 
number of researchers in the analyses of chaos and quantum 
transport in mesoscopic cosmos. In Chap. 8, we have even searched 
for a way to reconcile quantum with chaos . Let us now summarize
these results and address future prospects. 

Chaos and Quantum Transport in Mesoscopic Cosmos 

We have developed both classical and quantum-mechanical
investigations on open concave and convex billiards whose realization 
can be found in semiconductor microstructures. The conductance g(B)
as a function of the magnetic field B in open circle (Cl) and stadium 
(Sd) billiards (quantum dots) has proved to be related to the feature 
of classical dynamics. Fluctuations of g(B) are shown to be dependent 
largely on the stability of phase space in the underlying classical 
dynamics of closed billiards. In the case of Cl billiard, the regular 
modulation of periodic orbits in the phase-space structure gives rise 

198
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to regular oscillations of g(B). On the other hand, the global chaos 
and genesis of successive tori with increasing B in the case of Sd
billiard are responsible for slow and rapid variations of g(B),
respectively. The theoretical result is qualitatively consistent with 
Marcus et al.'s experiment (1992). Furthermore, the classical
conductance, calculated on the basis of the bouncing Larmor-orbit
picture, has been shown to reproduce most of the locations of peaks 
in the coarse-grained version of g(B).

Real nanoscale structures are accompanied by extrinsic 
randomness, e.g., corrugation of hard walls, impurities and thermal 
noises. The rapid progress of advanced technology will smear out 
these obstacles that prevent us from comparing theory with 
experiment. The quantum theory of chaos is thus entering an era 
that will see its experimental verification by means of quantum 
transport in mesoscopic devices. Currently, theoretical interests are 
focused on a simple theme: (1) showing universality of conductance 
fluctuations on the basis of random matrix theory, (2) deriving the S 
matrices directly by extending Gutzwiller's semiclassical trace formula 
to open systems. Nevertheless, the observed magneto-conductance of 
Marcus et al. would demand a much deeper insight: The discrepancy 
of the transition point by more than order of magnitude between the 
theory and experiment (see Chap. 4) is very serious, and one should 
accept a challenge to solve this puzzle which, meanwhile, can be 
solved by neither the semiclassical nor the quantum theory. 

For the purpose of enriching the above assertion, a comparative 
study on the Lyapunov exponents and magneto-conductance G(B) in
open square and single Sinai billiards has also been made. It has been 
discovered that conductance fluctuations depend again on the stability 
of mixed phase space in the underlying classical dynamics. In the
Sinai billiard case the classical phase space is globally stable against 
B, while for the square billiard it is globally unstable, so long as a 
low B-field region is concerned. Smoothed (coarse-grained) conductance 
Gcg (B) reveals a continuous transition between chaos and tori. In 
the case of a square billiard, the correlation field Bc of the smoothed 
conductance is shown to vary irregularly with respect to B, while in 
the case of a Sinai billiard it decreases monotonically with 
increasing B. More careful study revealed that two kinds of correlation 
fields Bc s are relevant: Bc of Gcg (B) (low frequency component) and 
that of G(B) - Gcg(B) (high frequency component) have turned out to 
mimic the average Lyapunov exponent <λ> and scaled standard
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deviation of Lyapunov exponent , respectively. The fluctuation of 
Bc in the case of square billiard is attributed to the ghost orbits with
ill-converged large or small Lyapunov exponents proper to a scattering 
(not periodic) orbit. In the Sinai billiard case, the geometry of the 
billiard forms an Aharonov-Bohm ring, so that A-B oscillation is 
observed in a weak field region. While the A-B effect suppresses 
symptoms of chaos, both Bc s for Gcg(B) and G(B) - Gcg(B) are nicely 
related to Lyapunov exponents and therefore capture the quantum-
classical correspondence. 

A pioneering experiment by Weiss et al. (1993) on quantum 
transport in mesoscopic Sinai billiards (i.e., antidot arrays) was also 
sketched. Despite the elegant interpretation of some of spectral 
properties, there remains an open question concerning the underlying 
low-B field anomaly, which should be interpreted on the basis of
isolated unstable periodic orbits. In particular, it is possible to gain 
alternative insight into the fluctuations in the vicinity of zero field 
when the system is fully chaotic and no stable periodic orbit survives. 

Semiclassical Quantization of Chaos 

The semiclassical theory of chaotic scattering is a powerful tool to 
describe the transport properties in the zero-field regime. Its application 
to convex hard disk systems (whose realization can be found in finite 
antidot arrays at the interface of semiconductor heterojunctions) have 
the following advantage: (1) The systematic enumeration of all periodic 
orbits is possible with the help of symbolic dynamics. (2) So long as 
one is concerned with the case of a large degree of opening, only short 
periodic orbits contribute substantially to the trace formula. As a 
consequence, the conditional convergence of the trace formula is possible 
by resorting to the Ruelle zeta function, eliminating the problem of 
the divergence due to exponential proliferations of periodic orbits 
(bouncing between disks). The locations of poles (i.e., scattering 
resonances) of the semiclassical S matrix are in good agreement 
with those evaluated by the exact quantum-mechanical theory. The 
region void of resonances in the complex plane is elucidated. The 
semiclassical theory of chaotic scattering has not only a conceptual 
significance for uncovering the quantum-classical correspondence, but 
also an advantage to be more practical than the exact quantum theory 
which, in applications, will be confronted with computational limitations 
in both c.p.u. time and memory area. 

As described in Chap. 2, the autocorrelation function of the trace 
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formula and that of S matrices can be calculated approximately, giving 
insight into the transport phenomena in the mesoscopic cosmos. The 
semiclassical scattering theory also predicts the zero-field Lorentzian 
peak and the Al'tshuler-Aronov-Spivak effect in the wave-number
averaged reflection probability for ballistic chaotic billiards (see 
Chap. 4). 

A serious problem, however, arises from the semiclassical 
scattering theory applied to quantum transport in actual mesoscopic 
microstructures (quantum dots), where conducting lead wires are 
connected to cavities. There the semiclassical quantization of chaos 
will be incomplete unless anomalous orbits due to wave diffraction 
are incorporated besides the scattering orbits. This notion holds for a 
series of interpretations since Jalabert et al. (1990) of the conductance 
fluctuations in the ballistic quantum transport. It is very difficult to 
fully describe the effect of diffraction in terms of the particle picture. 
(Here we have in mind the case where the trace formula is combined 
with the Kubo formula.) 

At the same time it should also be emphasized that the 
semiclassical theory of chaos or Gutzwiller's trace formula would not 
be the ultimate theory on "quantization of chaos." The semiclassical 
theory is based on the assumption that the Schrödinger-Feynman 
framework of quantum mechanics should be effective even in systems 
exhibiting (classical) chaos. It is therefore not so surprizing to find a 
good agreement between poles of semiclassical zeta functions and 
those of quantum-mechanical S matrices in hyperbolic billiards 
without any bifurcation. So long as one stays within the framework 
of the Schrödinger-Feynman quantum mechanics, the trace formula 
indeed provides the most valuable tool for exploring many interesting 
topics lying on the borderline between quantum and classical 
mechanics of chaotic systems. However, the calculation of the trace 
formula applied to fully-chaotic bounded systems will encounter a 
serious problem of nonconvergence in the series sum due to the 
exponential proliferation of periodic orbits. This problem may be 
partly overcome either by smoothing the density of states or by 
inventing a way to achieve conditional convergence by means of the 
Ruelle zeta function. For bounded systems, however, the eigenvalues 
computed from the trace formula are not real! To resolve this problem, 
one should improve the trace formula so as to include higher-order
terms in which will demand more complicated mathematics. 
Further, in generic and mixed systems with elliptic islands (KAM tori) 
coexisting with a chaotic sea (e.g., billiards in the magnetic field), even 
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the symbolic coding of periodic orbits is much less obvious. 
Since the fundamental law should be as simple as possible, we are 

here tempted to improve the Shrödinger-Feynman formalism of 
quantum mechanics for classically chaotic systems in order to 
capture a much simpler classical-quantal correspondence in the 
semiclassical limit. The pursuit of this kind should be guided by, 
and connected with, a growing number of experiments on nanoscale 
structures in the mesoscopic cosmos. 

Random Matrix Theories 

Despite an accumulation of works based on the identification of energy 
spectra in classically-chaotic systems and random matrix theory, there 
are many counter-examples: those systems possessing GOE level 
statistics cannot always exhibit chaos in the corresponding classical 
dynamics. The quantum theory of chaos has a much richer content 
than the random matrix theory. 

We have recognized in Chap. 7 why the quantum spectra of 
classically-chaotic systems should obey the same universal level 
statistics as in random matrix theory. There exist universal classical 
dynamical systems, i.e., the generalized Calogero-Moser (gCM) and 
Calogero-Sutherland (gCS) systems, lying behind quantum systems 
which are in general mixed in the corresponding classical dynamics. 
The statistical mechanics of gCM (or gCS) systems is very fruitful, 
leading to the curvature distribution as well as the major results of 
the random matrix theory. It is more general than the framework of 
random matrix theory. As explained in Chap. 7, the statistical 
mechanics of gCS systems under some constraints will be able to 
provide the level statistics in the intermediate and mixd regime. 

I have a strong criticism against the prevailing tendency to reduce 
the nature of chaos in quantum systems to that of random matrix 
theory. While many current researches concern the quantum irregular 
spectra mediated by fully-chaotic systems, most of the classical 
dynamical systems possess mixed features implying that KAM tori 
coexist with chaos. It is desirable to derive an intermediate statistical 
behavior linking the Poisson and Gaussian ensemble statistics from 
first principles, without being satisfied with Brody's empirical formula. 
There would however be no universal statistical behavior in intermediate 
regions, which is highly system-specific. Choosing the number 
variance that describes the long-range (rather than short-range)
correlation of ensemble of levels, we have pointed out one interesting 
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channel introduced by Gaudin as early as 1966. 

Dynamics beyond Born-Oppenheimer Approximation 

In an attempt to construct chaotic dynamics in quantum systems 
within the present formalism of quantum mechanics, we have 
analyzed in Chap. 6 the dynamics of systems with a few degrees of 
freedom beyond the Born-Oppenheimer approximation. In the adiabatic 
limit, when time scales in the dynamics of molecular complex 
systems are radically different between slow (nuclear) and fast 
(electronic) degrees of freedom, the reaction forces (due to fictitious 
magnetic and electric fields) are indeed exerted on the slow (nuclear) 
degrees of freedom that are treated classically. But the quantum 
(electronic) subsystem cannot exhibit chaos. In the dynamics beyond 
the adiabatic approximation, however, we can see a genesis of chaos 
in the quantum system or the genuine quantum chaos in both bounded 
and open systems. We saw a nice example illustrated by Bulgac and 
Kusnezov (1995). From a viewpoint of nonlinear (classical) dynamics, 
most of molecular kinetics in the microscopic cosmos exhibit a 
possibility to generate chaos. However, if each molecular complex 
system were quantized at the outset, this possibility would be smeared 
out. Eventually, it is difficult to see chaos in quantum systems 
without artificial approximations. This means that the present 
formalism of quantum dynamics should be augmented so as to 
accommodate temporal chaos. 

Towards a Challenge to Reconcile Quantum with Chaos 

For systems showing chaos in the underlying classical dynamics, we 
have proposed an alternative formalism of quantum dynamics which 
exhibits the results of quantum chaos while recovering the existing 
Heisenberg or Schrödinger equation in a suitable limit. 

The progress in nonlinear dynamics and chaos over past decades 
has revealed that chaos is easily generated from the time-difference
variant of the time-continuos integrable system. Motivated by a 
great significance of time-discretization of the originally time-
continuous classical dynamics and also by our expectation to 
understand more clearly the uncertainty principle between time and 
energy in our microscopic cosmos, we have chosen a way to discretize 
the time t in quantum dynamics. In this context, we have scrutinized 
a time-discrete variant of Heisenberg's equation of motion that has a 
direct correpondence with the classical equation of motion. The new 
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framework of quantum mechanics assumes both and 0 and 
can be reduced to classical mechanics as well as the present formalism 
of quantum mechanics in suitable limits. To be explicit, we propose a 
non-unitary time evolution of spin matrices, displaying a numerical 
evidence of transition from tori to chaos, i.e., genuine chaos 
characterized by a positive Lyapunov exponent. We are faced with the 
demand to proceed to improve the present trial by inventing a time-
discrete symplectic but still non-unitary quantum dynamics. 

The time discretization of Heisenberg equation of motion is not a 
unique way to generate quantum chaos. Other attempts may be 
conceivable to pursue the possibility of quantum chaos. Among them, 
we shall mention briefly (1) the extension of Liouville's equation for the 
density operator, i.e., a generalization of Schrödinger's equation, and 
(2) the method of using a time-continuous mesurement. 

(1) Attempt by Prigogine's School. By resorting to the statistical 
description, Prigogine and coworkers (Petrosky and Prigogine, 1994) 
are trying to incorporate chaos into the quantum dynamics. They 
choose to describe the evolution of an ensemble of states by means of 
the Liouville operator acting on the density operator: 

(9.1a)

(9.1b)

This Liouville equation is identical to Shrödinger's equation for in 
the integrable case. In fact, we have 

for pure and mixed states, respectively. By attributing 
the effect of chaos to Poincare' resonance, i.e., the resonance between 
different degrees of freedom, Prigogine et al. assert that in the 
presence of Poincare' resonances the nonunitary diffusion process is 
combined with the reversible process. In this anomalous process the 
eigenvalue problem for the Liouville operator (9.1b) has a solution 
outside the Hilbert space: The solution involves a singular term 
breaking the time reversal symmetry. Therefore the density operator 
cannot be reduced to wavefunctions any more. 

elaborate attempt by Prigogine and coworkers, however, is 
directed towards deriving the irreversibility (or determining a 
direction for the arrow of time) with a help of chaos and thus is not 

and

The
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concerned with generating the quantum chaos characterized by a 
positive Lyapunov exponent. 

(2) Quantum Chaos in Continuous Measurements. Bearing a 
photon-counting experiment in mind, we are presently investigating 
the possibility to envisage quantum chaos in continuous 
measurement. The measurement via photon-counting was originally 
proposed to realize the Schrödinger's cat state in the laboratory (Ueda 
et al., 1990). Let the whole system be composed of the measured 
system (i.e., the subsystem to be measured) and the detector (i.e., 
measurement apparatus). The measured system, consisting of a two-
level atom and the near-resonant photon field, is confined to a cavity. 
This measured system, called the Jaynes-Cummings model, is known 
to show chaos if the photon field could be treated classically without 
resorting to the rotating-wave approximation. 

On switching the photon detector on at t=0, one will continue to
measure photons emitted through a small hole of the cavity. The 
continuos read-out of the measurement information will give a 
continuous reaction on the subsystem and thereby lead to a non-unitary
evolution of the density operator ρ of the measured system. The 
measurement is of either the demolishing or non-demolishing type, 
depending on whether each detection of a photon is possible with or 
without an annihilation of the photon inside the measured system. The 
longer the measurement is continued, the more the measured system 
would be forced to couple with the large degrees of freedom outside, 
dissipating the information and losing the quantum coherence. After 
all, the measured system is expected to possess a feature of the
classical system which is able to show a chaotic response. In the 
measurement process, however, results of measurement are provided 
in an indeterministic way, so that one cannot predict the observed 
value in advance. Therefore the quantum chaos in the continuous 
measurement inevitably involves stochasticity. Investigations similar 
to ours is being made by Mensky (1995). 

Among others, however, the idea developed in Chap. 8 to 
construct an alternative framework of quantum mechanics by time-
discretization would provide the most promising way to unify quantum 
and chaos. 

Epilogue

As we have insisted throughout the book, the genesis of chaos is 
disturbing the quantization condition of the adiabatic invariants 
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(Einstein, 1917), which is a logical foundation of modern quantum 
mechanics. This condition is, on the one hand, a basis for the 
commutation rule in the Heisenberg formalism of quantum mechanics 
and, on the other hand, is identical to Schrödinger equation for the 
wavefunction that is dual to the particle executing periodic or quasi-
periodic motions. The latter statement is not changed by the 
probabilistic interpretation of the wavefunction. Once the framework 
of quantum mechanics was established, however, all questions about 
its very logical foundation seem to be forgotten, by our paying major 
attention to the application of the theory to practical results, e.g., 
superconductivity and quantum Hall effect. It is amazing that these 
essential questions remain still unanswered, despite the accumulation 
of fruitful and practical issues of quantum mechanics. 

In this book we have explained the semiclassical theory of chaos or 
Gutzwiller's trace formula (Gutzwiller, 1990). While still many 
activities are concerned with its improvement, e.g., inclusion of 
diffraction effects, higher-order corrections in etc, the trace 
formula is not the ultimate theory on quantization of chaos. This 
formula is based on the assumption that Schrödinger-Feynman's 
formalism of quantum mechanics should be effective even for classically-
chaotic systems. The genesis of chaos, however, makes the above 
asumption groundless and therefore demands that we enrich or 
revolutionize the present framework of quantum mechanics 
(Nakamura, 1993). 

Our considerable efforts have also been devoted to describing the 
quantum-classical correspondence ( quantum symptoms of chaos) 
within the present formalism of quantum mechanics. While the 
description has been largely concerned with quantum transport and 
irregular energy spectra, wavefunction features are much less trivial. 
In particular, many works have elucidated (i) the suppression of 
chaotic diffusion in the wavepacket dynamics and (ii) the scars of 
unstable periodic orbits embedded in wavefunctions (Giannoni et al., 
1991).

However, the major interest throughout the book has centered on 
the pursuit of a quantum mechanism which generates chaos. So far 
there is no experimental report to suggest a breakdown of quantum 
mechanics when applied to classically-chaotic systems. This might be 
due to the presence of competition between fluctuations caused by 
determinisic chaos and those by thermal noise and random potentials. 
Nevertheless, there is a strong possibility to envisage a limitation 
of quantum mechanics which cannot accommodate chaos, owing to a 
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rapidly-developing high technology like (1) ultra-low-temperature
technology, (2) ultra-small scale fabrication of highly-purified quantum 
dots and antidots, and (3) measurement on ultra-short time scales. 

As candidates capable of generating chaos in quantum mechanics, 
we mentioned: (1) the time-discretization of Heisenberg's equation of 
motion, (2) a generalization of Liouville's equation so as to include 
dissipative process, and (3) continuous measurement, e.g., via photon 
counting. Other kinds of new quantum formalisms would also be 
conceivable which should reduce to the Hamilton-Jacobi equation in 
the classical limit It is crucial that theoretical efforts in this 
direction keep stride with experimental verifications via advanced 
high technologies such as quantum transport in nanoscale quantum 
dots or antidots of high purity and with suppressed noise (Beenakkar 
and Houten, 1991; Akkermans et al., 1995; Nakamura, 1997). To 
conclude, the pursuit of quantum chaos to reconcile quantum with 
chaos deserves an extremely great effort, comparable to the 
theoretical and experimental activities around the blackbody radiation 
of one century ago that led to the discovery of quantum mechanics. 
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