BERKELEY – Tens of millions of years ago, in a galaxy far, far away, a massive star suffered a nasty double whammy.
Signs of the first shock reached Earth on Oct. 20, 2004, when the star was observed letting loose an outburst so enormous and bright that Japanese amateur astronomer Koichi Itagaki initially mistook it for a supernova. The star survived for nearly two years, however, until on Oct. 11, 2006, professional and amateur astronomers witnessed it blowing itself to smithereens as Supernova (SN) 2006jc.
“We have never observed a stellar outburst and then later seen the star explode,” said University of California, Berkeley, astronomer Ryan Foley. His group studied the 2006 event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova’s blast wave ran into a slow-moving shell of material, presumably the progenitor’s outer layers that were ejected just two years earlier. If the spectral lines had been caused by the supernova’s fast-moving blast wave, the lines would have been much broader.
Another group, led by Stefan Immler of NASA’s Goddard Space Flight Center in Greenbelt, Md., monitored SN 2006jc with NASA’s Swift satellite and the Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of 10 Jupiters.